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Abstract: Researchers in biological sciences and genetics are faced with 
high-dimensional data, such as the microarray data, and the analysis and proper 
interpretation of these data are very important in bioinformatics and systems 
biological sciences. In such types of data, the number of variables, for example, the 
genes, is many times greater than the number of samples. Therefore, the dimension 
of the data must be reduced at the primary point. Then, the analysis, for example, 
clustering, is performed on the compacted data. This process is called data summa-
rization. There are various ways to summarize high-dimensional data, which 
depends on the nature of the data. The aim of data summarization is to remove 
unnecessary features so that the data are classified more accurately. Shannon’s 
entropy information is a common method for clustering genes in microarray data 
and selecting a set of disease-related genes. This chapter introduces and illustrates 
statistical inference concepts of entropy in microarray data clustering to select a set 
of the most important genes associated with a disease.
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INTRODUCTION

To analyze high-dimensional data, many mathematical and statistical models have 
been developed. Most of these models focus on eliminating the unnecessary and 
unimportant features of a dataset, so that the clustered data are accurate. A popular 
source of clustering and modeling of high-dimensional data is the microarray data. 
The concept of systems biology has become more prominent in biological sciences 
(1). Systems biology is the science of summarizing data and detecting patterns among 
datasets. In other words, systems biology is the computational modeling of biosystems 
to interpret high and complex genetic data and other complex biological systems 
(2–4). Systems biology incorporates computational science, mathematics and statis-
tics in the modeling of genetic and biological data (Figure 1). Entropy is one of the 
mathematical concepts that can be used in the modeling of systems biology data. In 
entropy, there are two concepts: entropy and information. Researchers usually do not 
distinguish between the two concepts. Entropy represents the irregularity (i.e., uncer-
tainty) of a system, while information represents the difference between the maximum 
and the actual value of entropy of a system. In other words, information shows the 
correlation between two systems (e.g., two genes), which is derived from the entropy 
of the two systems and their subscription (5). Entropy application is a kind of math-
ematical challenge in analyzing biological data that can be important in determining 
relationships and clustering of results. Researchers have used entropy techniques to 
model cellular systems and study changes in gene expression patterns. In this chapter, 
the role of entropy to model the expression of genes in microarray data is discussed 
with emphasis on clustering, refinement and Shannon’s entropy theory.

Figure 1  Schematic diagram for the concept of communication in systems biology.
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DATA NORMALISATION METHOD

Data refinement is very important in the analysis of complex systems such as the 
microarray data. The calculation of gene expression in the microarray technique 
is based on the coloration of the genes, and problems associated with coloration 
are not uncommon. The occurrence of such problems leads to an unreasonable or 
artificial increase or decrease in the expression level of genes. A simple method to 
avoid outliers is to use mean ± 3SD and, occasionally, mean ± 2SD intervals. This 
approach eliminates the values outside of these ranges. Another approach to avoid 
staining errors in the microarray data is the fold-change criterion. Usually, this 
criterion is obtained based on the expression of a gene in healthy and diseased 
samples as follows:
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where the mean of gene expression levels in healthy and patient samples is indi-
cated by Ave(C) and Ave(N), respectively. A cut-off is considered for the obtained 
fold-changes, so that fold-changes less than the cut-off are usually left out of the 
analysis process.

SHANNON’S ENTROPY

In the analysis of high-dimensional data, there are two approaches to estimating 
parameters and effects: the classical approach (i.e., frequentist) and the Bayesian 
approach. Entropy is a classical approach, and it indicates the degree of irregular-
ity or uncertainty in a system. Uncertainty exists in many of the learning stages of 
high-dimensional data (6). Although the concept of entropy is used and defined 
in physics and mathematical sciences, we have attempted to determine a set of 
coordinates with the least irregularity in a signaling complex using the concept of 
entropy. Entropy is based on the concept of uncertainty, which means one is 
unconfident about the occurrence of a process. Therefore, increasing the uncer-
tainty of a system means reducing the entropy of that system. In fact, evaluation, 
measurement and modeling of uncertainty that affects the whole process of data 
analysis have a significant impact on the learning performance of high-dimensional 
data. Without considering this uncertainty, the performance of learning strategies 
is sharply reduced. Claude E. Shannon, an American mathematician, introduced 
Shannon’s entropy and information theory in 1948 under the title “A mathemati-
cal theory of communication” (7). In the concept of entropy, Shannon refers to the 
degree of uncertainty in the received information and expresses it with probability 
theory. Shannon’s entropy in information theory is the criteria for measuring the 
uncertainty expressed by a probability distribution.

Note, information theory is the expectation value of information (i.e., mean) con-
tained in each variable which can also be a gene. In other words, the entropy of each 
variable is the amount of its uncertainty. To calculate the uncertainty of a system, we 
must be able to formulate the probability of events in that system. Let us consider a 
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random experiment X (e.g., microarray data) with m events x1, x2,…, xm, with the 
occurrence probabilities p(x1), p(x2),…, p(xm), respectively. In this case, we can con-
sider xi as the ith gene, in a microarray dataset. The uncertainty of X (i.e., entropy) is 
represented by H(X), and the function must depend only on the p(xi), i = 1, 2,…, m. 
The formulation of H(X) function should be the following properties.

Property 1: The desired function should not be dependent on the sequence of 
events (e.g., genes), hence:

H(p1, p2,…, pi, pi + 1,…, pm) = H(p1, p2,…, pi+1, pi,…, pm).

Note, the H(X) function on any pi = p(xi), i = 1,2,…,m must be continuous.
Property 2: Since the entropy function is continuous, so with a slight change in 

the probabilities p(x1), p(x2),…, p(xm), the amount of uncertainty (i.e., entropy 
value) will also change.

Property 3: If an event divides into two events, the original H(X) function must 
be the sum of the weighed H(X) functions.

Property 4: The entropy function H(p1, p2,…,pi, pi+1,…, pm) should be estab-
lished in the following equation:
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Property 5: Let, two experiments X and Y with m and n events (n < m), respectively. 

If occurrence probability of the events in the two experiments is 1

m
 and 1

n
, then:
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It can easily be shown that the entropy function has the above properties. 
Shannon’s entropy can be defined for a random variable with a discrete or con-
tinuous distribution (7). In this section, we try to mention both together and 
illustrate the concept of entropy by several examples. Let a discrete random vari-
able such as X = {x1, x2,…, xm} with a probability mass function p(x). The entropy 
of X is:

	
1

[ ( )],1 2 1 2H X p x log
p x

p x log p x E log pi
n

i
i

i
n

i i x( ) ( ) ( ) ( )( ) = Σ






= −Σ = −= =

where p(xi) = Pr(X = xi) and is the probability of the ith value of the random vari-
able X.

Now, let a continuous random variable X. Usually, entropy for the continuous 
random variables is called the differential entropy. The entropy value for the con-
tinuous random variable X with the probability density function f(X) is:

H(X) = H( f(x)) = E[−log( f(x))] = – ∫ f(x)log( f(x))dx,

where 0log0 = 0.
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The entropy may have a logarithmic base 2, 10 or Euler’s number e. If the 
logarithmic base is 2 or e, then the entropy unit is “bit” or “nat,” respectively. 
Here  we should note that some physicists and mathematicians such as 
Lazare  Carnot, Ludwig Eduard Boltzmann, and Rudolf Clausius have tried to 
introduce the concept of entropy theory, and others such as Claude Elwood 
Shannon were leading the introduction of entropy information theory (4, 7, 8).

Let, two random variables X and Y with probability density functions f(X) and 
f(Y) from the support regions S and T, respectively. The three entropies (i.e., 
H(X), H(Y), and H(X, Y)), the mutual information I(X; Y), and the entropy of 
X conditioned on Y and vice versa (i.e., H(X|Y) and H(Y|X)), are shown graphically 
in Figure 2.

The above features will be described below. The entropy function is funda-
mentally different from the maximum likelihood function. To further under-
stand the entropy concept compared to maximum likelihood, let a Bernoulli 
random variable X with parameter p. The entropy value of the Bernoulli ran-
dom variable is:

1 1 1 1 ,0
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2H X p p log p p p log p plog pX
X X
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The Bernoulli entropy function has the highest value when 
1

2
p = . Here are 

some simple examples for understanding entropy and calculating it.

Figure 2  Features of Shannon’s entropy function.
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Example 1

Let us assume X is the presence or absence of a G allele in the CAPN10 gene, 
which associate with type 2 diabetes mellitus. The G and A alleles are detected 
with the probability p and (1−p), respectively, that is,

{= ( )−0 1 ; “A”
1 GX with prob p for allele

with prob p; for “ ” allele

For various values of p, that is, G allele frequency, the entropy value for the 
random variable X is shown in Table 1. In fact, when p is closer to 0.5, the uncer-
tainty level over the G allele is increased, and thus, the amount of information 
about the test will be increased. In this example, we obtain an entropy G allele 
with p = 0.25.

1 1

= (0.25 (1 – 0.25) [0.25 (1–0.25) ])+

(0.25 )(1 – 0.25) [0.25 (1-0.25) ]) = 0.56

0

1
1 1

1 1-1 1 1-1

0 1-0 0 1-0]

H X p p ln p p

nat .

x

x

x x x

ln

ln

∑ ( )( ) ( )( ) = − − −
=

− −

Example 2

In this example, we will show how to calculate the Shannon’s entropy informa-
tion, which is a kind of dependency between variables using discrete expression 
profile. Now, suppose the discrete expression profile for two genes A and B is 
[1, 1, 0,-1, 0] and [1, -1, 0, 1, 1], respectively. The occurrence probability of each 
mode for the genes is presented in Table 2.

Therefore, the amount of entropy for the gene A and gene B is:
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TABLE 1	 The five various values and entropies of G allele 
of CAPN10 gene

p: 0 0.25 0.50 0.75 1

H(X): 0 0.56 0.69 0.56 0
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To calculate H(A,B), the nine possible combinations with respect to the joint 
probabilities P(A,B)s should be considered as follows:

( ) ( ) ( )= = − =1,1
1

5
; 1,0 0; 1, 1

1

5
,P P P

( ) ( ) ( )= = − =0,1
1

5
; 0,0

1

5
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( ) ( ) ( )− = − = − − =1,1
1

5
; 1,0 0; 1, 1 0,P P P

then H(A, B) = 1.61. Finally, the mutual information between the two expression 
profiles A and B is:

I(A, B) = H(A) + H(B) – H(A, B) = 1.05 + 0.95 – 1.61 = 0.39 nat.

Note, high levels of mutual information suggest similarity between two expression 
profiles.

In addition to the mentioned concepts, one of the important entropy rules for 
random variables (iid) is the asymptotic equipartition property (AEP) theorem, 
which points out that the joint probability of a sequence of random variables, that 
is, p(X1, X2,…, Xn), is very close to 2–nH(X).

Let X1, X2,…, Xn be a sequence of iid random variables with a probability of 
density function f(X), then:
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In the context of entropy, we encounter another concept called joint and 
conditional differential entropy. In other words, the differential entropy for a set of 

TABLE 2	 Frequency distribution of the expression profile 
of A and B genes

Gene: P(1) P(0) P(-1)

“A” 2/5 2/5 1/5

“B” 3/5 1/5 1/5
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n random variables X1, X2,…, Xn with the density function f(x1, x2,…, xn) is defined 
as follows:

H(X1, X2,…, Xn) = – ∫ f(x1, x2,…, xn) log(f(x1, x2,…, xn)) dx1 dx2…dxn.

For example, suppose that n random variables X1, X2,…, Xn have a multivariate 
normal distribution with mean vector µn×1 and a variance–covariance matrix ∑, 
then the entropy of a multivariate normal distribution is:

π( ) ( )= Σ, ,...
1

2
log 21 2H X X X en

n ,

where |∑| is the determinant of variance–covariance matrix ∑.
On the other hand, if X and Y are two random variables (e.g., two genes) with 

a joint density function f(X, Y), then their conditional differential entropy indicated 
by H(X, Y) is defined as follows:

H(X|Y) = -∫ f(x,y)log(f(x|y)) dxdy.

Since

( ) ( )
( )=
,

f x y
f x y

f y

can be written as

H(X|Y) = H(X, Y) – H(Y).

In choosing a set of random variables (e.g., a set of related genes), we must use 
two concepts of relative entropy and mutual information, which are referred to 
next. The relative entropy for continuous random variables X and Y with probabil-
ity density functions f(X) and g(Y) is equal to:
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Note that relative entropy is always non-negative, that is,

D(f ||g) ≥ 0.

The mutual information for the two continuous random variables X and Y with 
the joint probability density function f(X, Y) is:

∫ ( ) ( )
( )( ) ( )

( ) ( ) ( )=












=







;

,
,

,
.I X Y E log

f X Y

f X f Y
f x y log

f x y

f x f y
dxdy



High-Dimensional Data Using Entropy Information 169

For simplicity, the mutual information can be written as follows:

I(X; Y) = H(X) + H(Y ) – H(X, Y ) = H(X) – H(X|Y) = H(Y) – H(Y|X),

hence:

I(X; Y) = D(f(x, y)||f(x)f(y)).

Note,

I(X; Y) ≥ 0,

H(X|Y) ≤ H(X).

In H(X|Y) ≤ H(X), equality will be achieved if and only if X and Y are independent.

Example 3

Now, let two gene expressions corresponding to A and B genes as two random 
variables, which they have bivariate normal distribution as follows:
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Suppose that the gene expressions of two genes A and B for three tumor tissues are:

Then, the measures of entropies H(A), H(B) and H(A,B) are:
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Note, the above equation shows that the high variance increases the measure of 
entropy or uncertainty.

Consider the gene expression levels in Table 3 for the two genes and three 

tissues. Therefore, ( ) ( )=µ
µ

2.40
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2

In this case, H(A) = 1.93, H(B) = 2.22 nat. In addition, H(A, B) calculate as follows:

π Σ π ρ( )( )( ) ( ) ( )=   = + + σ σ + − =ln,
1

2
2 1 2

1

2
1 1.88 .2

1 2
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Gel’fand and Yaglorn (9) showed that an exact relationship between entropy 
information, I(A,B), and the correlation coefficient for A and B gene, r is:

ρ( )( ) ( )( ) ( )= + − = − − =, ,
1

2
1 1.61. .2I A B H A H B H A B ln nat

The important limitation of entropy information is that its upper limit is unknown, 
that is, I(X, Y) ¨ (0, +∞) Therefore, an index to measure the correlation of two 
random variables based on entropy information should be introduced, which 
does not have this limitation. The normalized mutual information, U(X,Y), has 
such property. The normalized mutual information concept, U(X,Y), is used to 
choose a set of correlated variables using the uncertainty function, which is shown 
for two random variables (e.g., two genes) X and Y as follows:

( ) ( )
( ) ( )=

+
,

2 ,
U X Y

I X Y

H X H Y
,

where 0 ≤ U(X,Y) ≤ 1. The value U(X,Y) close to zero means that the two random 
variables X and Y have a high mutual relevance, that is, relation, while the value 
U(X,Y) close to 1 means that the two random variables have a low mutual 

TABLE 3	 The gene expression levels for three tumor 
tissues

Tissue 1 Tissue 2 Tissue 3

Gene “A” 1.12 2.65 3.68

Gene “B” 0.98 2.28 3.95
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relevance, that is, independence (4, 10). Therefore, U(A,B) with respect to data in 
example 3 is 0.78 nat, which it is a low mutual relevance. For further study on 
entropy and its properties, we suggest two books: Handbook of Statistical System of 
Biology and Elements of Information Theory (4, 8).

APPLICATION

In this section, we use the results of Bahreini et al. (11) which extracted the informa-
tion (i.e., gene expression) from the study of Notterman et al. (12). In their study, 18 
adenocarcinoma colon and 18 normal tissue samples from the Cooperative Human 
Tissue Network were evaluated. In that research, the mean (±SD) age of the patients 
was 67.56 (±14.09) years. Of the total 7465 available cDNAs, only 3,228 genes had 
fold change more than one and they were selected for analysis. Shannon’s entropy 
method was used to select an appropriate set of genes associated with colon cancer, 
and 29 genes with the highest amount of information were finally selected.

Before using entropy to select a gene set associated with colon cancer based on 
gene expressions, the hierarchical method was used for clustering of the genes 
(Figure 3). The figure shows that 3128 selected genes are shared in three clusters. 
However, the hierarchical cluster analysis dendrogram shows that the frequency 

Figure 3  Cluster map derived from a two-way cluster analysis by the hierarchical method. 
Approximately 3000 common genes in tumor tissues and paired normal tissues were 
combined in a matrix. Clustering was performed on this matrix. Each color patch on the 
cluster map indicates the expression intensity level of the associated gene in that tumour 
and normal tissue samples. The color patches on the cluster map have continuity on 
expression levels from yellow (highest) to red (lowest) (11).
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of the yellow points (i.e., high gene expression) in tumor samples is higher than 
normal samples, but it is simply not possible to identify a set of most relevant 
genes with colon cancer recognition. In other words, in Figure 3 there is no 
specific visible pattern in the color spectrum. Usually, clustering is appropriate 
when a specific spectrum of colors can be found in normal and tumor samples. 
Therefore, although the genes are shared into three clusters in Figure 3, the 
obtained result is not accurate. One of the problems may be the lack of refinement 
of the levels of gene expression. In studies on gene expression analysis, data 
refinement process and the removal of outlier values are very important.

Figure 4 demonstrates the importance of refining the data. The data refinement 
methods are numerous and varying. For example, in analyzing microarray data, the 
gene expression levels obtained may be very large. In this case, fold change can be 
used to refine the data. Due to the choice of a suitable cut-off point in the fold-
change index, we can omit the outside domain data from the analysis to yield more 
accurate results. It should be emphasized that we were not able to find a proper and 
accurate statistical method for choosing the fold-change critical point. In Bahreini 
et  al.’s study (11), 29 genes were selected from 3128 genes after performing 
Shannon’s entropy information to determine a collection of the most relevant genes 
associated with colon cancer. Usually, for graphical representation of the gene 
expression levels, a dendrogram plot was used. Figure 4 shows that the 29 selected 

Figure 4  Cluster map derived from two-way cluster analysis with the hierarchical method. 
We combined 29 common genes in tumor and normal tissues in a matrix. Clustering was 
performed on this matrix. Each color patch on the cluster map indicates the expression 
intensity level of the associated gene in that tumor and normal tissue samples. The color 
patches on the cluster map have continuity on expression levels from yellow, that is, highest, 
to red, that is, lowest (11).
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genes are shared into two clusters by Shannon’s entropy method. By comparing two 
dendrograms (Figures 3 and 4), it can be seen easily that in the second dendrogram 
(Figure 4), the gene expression in tumor samples is far more than in normal samples, 
while such a difference was not obvious in the first dendrogram (Figure 3).

CONCLUSION

To reduce dimension in the microarray data and to prevent common errors in 
statistical modeling, many methods have been introduced, and entropy is one of the 
most widely used concept in medical and genetic sciences. Entropy was introduced 
by Nicholas Georgescu-Roegen in 1971 and later developed by scientists based 
on the principles established by Shannon. Shannon had a major role in introducing 
entropy information, which has been widely used in high-dimensional studies. One 
of the advantages of entropy is that calculation of values is based on theoretical 
forms, not the empirical and personal concepts. These values give small or large 
weights, proportional to the small or large actual values. Where researchers seek 
to  estimate the risk from an agent, the level of uncertainty is the basis of the 
computational form of the risk value (Risk = Uncertainty + Damage, where “Damage” 
in the equation shows the measure of the loss). The function of conventional feature 
selection algorithms is based more on the choice of the ones that have the most 
connection with the target class and the least redundancy among the selected 
features. The major disadvantage of these algorithms is that they ignore the 
dependencies between the candidate and the unselected feature. However, based 
on  Shannon’s entropy information, we can introduce a theoretical algorithm 
that does not display such disadvantages. Although entropy is often used as a feature 
of the information concept, it is crucially dependent on the probability model.
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