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Abstract: Understanding of biological processes and aberrations in disease condi-
tions has over the years moved away from the study of single molecules to a more 
holistic and all-encompassing view to investigate the entire spectrum of proteins. 
This method, termed proteomics, has been enabled principally by mass spectrom-
etry techniques. The power of mass spectrometry-based proteomics lays in its 
ability to investigate an entire proteome and associated expression or modification 
states of a huge amount of proteins in one single experiment. This massive amount 
of data requires a high level of automation in data processing to render it into a 
reduced set of information that can be used to answer the initial hypotheses, 
explore the biology or contextualize molecular changes associated with a physio-
logical attribute. This chapter gives an overview of the most common proteomic 
approaches, biological sample considerations and data acquisition methods, data 
processing, software solutions for the various steps and further functional  analyses 
of biological data. This enables the comparison of various datasets as a summation 
of individual experiments, to cross-compare sample types and other metadata. 
There are many approach pipelines in existence that cover specialist disciplines 
and data analytics steps, and it is a certainty that many more data analysis meth-
odologies will be generated over the coming years, but it also emphasizes the 
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inherent place of proteomic technologies in research in elucidating the nature of 
biological processes and understanding of disease etiology.

Keywords: data analysis; mass spectrometry; proteomics; software; workflows 

INTRODUCTION

The development and improvement of high-throughput techniques in “omic” sci-
ence have paved the way not only to a broader view of the molecules involved in 
a specific condition but also to generate networks of all interacting elements 
(genes, proteins, and metabolites) to gain a better understanding of how a specific 
biological system works. Despite the over-abundance of genomics research in this 
field, there is so much more complexity left out in a system that can be explained 
by the understanding and integration of proteomic data. The proteome is more 
complex and is not as stable as the genome, and it is not only based on what is 
observed in the genome but also influenced by several factors. Protein expression 
depends on tissue type, environmental stimuli, and post-translational modifica-
tions (PTM) that influence its level of activity, structure, function and regulation 
(1, 2). Moreover, life depends on proteins, as they are responsible for many 
 complex processes within a cell, from replication, gene transcription and transla-
tion to cellular senescence and death. Therefore, by having a better understanding 
of the proteome, a wider comprehension of cellular regulation can be achieved. 
Proteomics is the high-throughput study of proteins incorporating the identifica-
tion, quantitation, analysis and comparison of differential expression of proteins 
from samples under specific biological conditions. The characterization of the 
proteome involves the identification of structure, function, interactions and 
 modifications (3).

Because of its improved sensitivity and specificity, mass spectrometry (MS) 
proteomics is the most widely used approach, and it is considered the method of 
choice to obtain global measurements of proteins (4). The most common and 
classic applications of proteomics are to characterize large datasets to create an 
inventory of identified proteins in different tissue or cellular samples, as well as to 
generate lists of differentially expressed proteins from samples under specific con-
ditions (5). However, these data alone lack a biological meaning, and therefore, it 
is essential to pursue additional approaches to allow a better interpretation of 
biological processes (6, 7).

Qualitative and quantitative methods are also of importance in network analy-
ses. Qualitative approaches are much more common. Although quantitative net-
work analysis can generate more specialized results and are better adapted to 
generate new insights and advancement in biomedical research by unraveling the 
significant proteins that interplay in a disease, producing new diagnostic hypoth-
esis, the standardization and homogenization of its analysis still need improve-
ment to establish its reliability and reproducibility when analyzing high-throughput 
data (8, 9).

High-throughput technologies and bioinformatic tools are fundamental for 
proteomics data interpretation to discover new biological insights on cellular pro-
cesses, disease etiology and biomarker candidates. Although these tools are under 
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continuous update and new approaches are implemented, the development of 
harmonized benchmarks for datasets and analysis, as well as to establish gold-
standard workflows, is imperative to produce more reliable and reproducible 
results, and by doing so, it will help to overcome the challenges of proteomics 
data interpretation (10, 11).

The acquisition of a vast amount of high-quality raw spectra using MS is nowa-
days a relatively simple task with the right equipment and involves a high level of 
automation, which however leads to a fundamental, and crucial, step to mathe-
matically and statistically interrogate the data and ultimately match it to a library 
of known or hypothetical molecules. This is of particular importance in strategies 
such as shotgun proteomics and other large-scale MS screens, whereas specific 
applications such as selective or multiple reaction monitoring (SRM/MRM) have a 
different requirement for the entire workflow and require appropriate specific 
software solutions (12). Figure 1 shows a general overview of a typical proteomics 
workflow, starting from protein and peptide preparation from tissues to the com-
putational procedures to obtain a list of molecules with associated confidence or 
significance scores that can then be analyzed further.

SAMPLE TYPES AND SAMPLE PROCESSING APPROACHES

Body homeostasis is maintained through specialized systems, which are orches-
trated by the interplay between cells, tissues and organs. Each system anomaly 
can be better described by specific samples; therefore, to characterize diseases, 
it becomes essential to analyze the proteome of the appropriate samples. Many 
sample types are suitable for proteomic analysis, including cells, organs, tissues 
and body fluids. Biomarker discovery helps to identify pathological states, track 
disease progression and improve diagnostics or disease etiology, which are some 
of the common applications when using these sample types (13). An important 

Figure 1 Flowchart and procedures for a generic proteomics pipeline.
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factor to be considered for the success of a proteomic approach is the quality 
and quantity of the sample, due to the challenge that its complexity implies for 
MS techniques. As the detection rates of proteins using MS are directly related 
to the absolute quantity of these biomolecules in a sample, high-abundance 
proteins tolerate losses during processing quite well. However, the detection 
rates of low-abundance proteins are usually much more sensitive towards loss 
due to common instrumentation and processes, and therefore, the preferred 
workflow is microproteomics, which minimizes this loss and increases the sam-
ple processing  efficiency (14). Samples, such as the ones derived from cancer or 
tumour cells, exemplify low-abundance protein samples. They should be ana-
lyzed by specific microproteomic workflows with special adaptations of the 
techniques for sample preparation, cleaning, fractionation and separation to 
ensure minimal losses before analysis and increase sensitivity of nano/ 
microgram-samples that allows maximal identification of low-abundance pro-
teins (15, 16). 

Cell lines

A general overview of disadvantages and applications of each sample-source 
type is presented in Table 1. Although heterogeneous cell populations that com-
pose tissues can be individually isolated and analyzed, cell lines are believed to 
reflect the protein composition of primary cells and specific tissues. Moreover, the 
reproducibility in proteomic analysis using cell lines is one of its main advantages 
over other sample types. It also allows proteomic subcellular analysis (17). Several 
applications of proteomic analyses using cell lines have been established to inves-
tigate molecular pathways of specified cell types, differences between normal and 
disease phenotypes, and different stages of diseases (18, 19). However, problems 
in cell line culturing are rather common if no quality control is carried out and can 
lead to unreliable results if not detected and treated. The most common problems 
with cell lines are genomic instability, infections by microorganisms that could 
alter cell turnover and protein expression patterns and cross-contamination lead-
ing to the growth of a mixture of cell types, affecting the results of the study even 
before proteomic analysis can be performed (20).

Tissue culture

Proteomic analysis with tissue culture as a sample is also a very informative 
approach. It allows the interaction and analysis of the diverse cell types involved 
in a disease, leading to a broader view of the biological systems of importance in 
pathology. It is basically based on the growth of tissue outside the organism, under 
controlled conditions. Tissue samples for this are obtained through surgery from 
humans or animals. Tissue culture-based proteomic profiling is useful for under-
standing the biological mechanisms underlying a disease, biomarker and thera-
peutic target identification as well as effects in a sample due to viral, drug or 
genetic changes (21). Techniques, such as 3D co-culture systems, fresh tissue 
proteomics and tumour spheroid models, have improved the analysis and results 
(22). However, its accessibility remains as its major downside, and no accurate 
track in disease progression can be performed without re-sampling.
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Organ

Organ samples can be maintained under specific culture conditions, and its differ-
ent cell types can be analyzed. It is the most difficult sample to obtain from 
humans, and since biofluids are secreted from several organs and make proteins 
more accessible, they are the sample of choice for biomarker discovery and pathol-
ogy research (23, 24). However, reliability and reproducibility are still issues to be 
addressed, before they can be eventually established as a good source of clinical 
proteomics. Like the tissue samples, animal models serve as a good source of 
organ samples. They provide a controlled environment and the possibility to fol-
low up the changes in proteomic profiling throughout the course of a disease. The 
major drawback using animal models is that they cannot accurately predict how 
a system works in humans (25). However, in order to overcome this issue and to 
have a better and broader understanding of the interaction of human proteome 
within a system, new engineered model systems have been created, such as mul-
tiorgan lab-on-a-chip platforms, that show a better correlation with human sys-
tems than animal models, mimicking the key aspects of responses like drug 
treatment (26, 27).

Exosomes

Besides the analysis of the proteome in cells, proteins secreted by the cells have 
gained attention when unraveling the etiology of diseases. All together, these pro-
teins are known as secretome, and a specific component of the secretome that has 
been studied in relation to pathology is the exosome. Exosomes are membrane 
vesicles, differentiated from other vesicles by size and expression of the CD81 
protein. They have a very low abundance of proteins, which is undetectable using 
biofluid analysis (28). Among these proteins are some that are specific to the bio-
logical fluid or cell, making the exosomes an interesting source for biomarkers to 
advance the identification and understanding of pathologies (29).

Biological fluids

Depending on the purpose of the research, diverse body fluids can be collected 
and processed for proteomic analysis. A general overview of disadvantages and 
applications of each sample-source type is presented in Table 1. Among the com-
monly analyzed biological fluids in proteomics are blood, serum, plasma, cerebro-
spinal fluid (CSF), urine, saliva and semen. The fluctuation in their protein levels 
is expected to reflect pathophysiological conditions; however, some drawbacks 
such as protein content, high abundance of masking proteins, and sample insta-
bility can lead to complex interpretations (30). Blood, serum and plasma are the 
most common biological fluids in proteomic research due to its non-invasive 
nature and its high concentration of protein/peptides, as well as the assumption 
that blood reflects the pathophysiological state of several organs. Biofluids such as 
urine and CSF are not the most desirable samples for proteomics because they 
contain a lower protein/peptide concentration (31). In addition, a complicated 
collection process is a hindrance in obtaining a reasonable amount of CSF 
sample (31).
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TABLE 1 Biological fluids overview: Applications and 
disadvantages

Biological 
fluid Applications Disadvantages

Serum and 
plasma

Serum and plasma have 
been used for multiple 
proteomics–based biomarker 
discovery studies.

Dynamic qualitative and quantitative range of 
proteins; small number of highly abundant 
proteins can mask potential biomarkers; 
biomarker of interest can be lost upon the 
removal of highly abundant proteins. 

Cerebrospinal 
fluid (CSF)

Potential diagnostic utility in 
neurodegenerative diseases 
including Alzheimer’s, 
multiple sclerosis and 
Parkinson’s.

Requires a lumbar puncture or a spinal tap, invasive 
procedures. Traumatic punctures can alter CSF 
protein expression levels and skew a diagnosis; 
small volumes of samples obtained; yield a 
highly dynamic range of protein concentrations; 
small number of highly abundant proteins can 
mask potential biomarkers; depletion techniques 
are neither time nor cost-effective techniques; 
biomarker of interest can be lost upon the 
removal of highly abundant proteins.

Urine Good source of biomarkers 
for urogenital and systemic 
diseases.

Definition of disease-specific biomarkers is 
complicated; significant changes in the proteome 
throughout the day can be connected with the 
time of collection, fluid intake, diet, exercise, 
circadian rhythms and circulatory levels of 
various hormones; presence of MS hampering 
salts; lower concentration of proteins/peptides 
compared to serum and plasma.

Saliva Most of the biomolecules that 
are usually detected in urine 
and blood can also be found 
in salivary secretions; about 
30% of blood proteins are 
also present in saliva.

Very low concentration of proteins; very rapid 
protein degradation in whole saliva at room 
temperature, this may occur during saliva 
collection and handling.

Semen Applications in research areas 
such as reproduction and 
prostate cancer, and used 
for many purposes in the 
diagnosis of male fertility.

Small number of highly abundant proteins can mask 
potential biomarkers; biomarker of interest can be 
lost upon the removal of high abundant proteins.

Circulating 
tumour cells 
(CTC)

Practical application in diagnosis 
and disease treatment, 
determine the prognosis of 
metastatic progression or 
relapse, monitor anti-cancer 
treatments, understand the 
mechanism of metastatic 
disease and develop 
new strategies in disease 
treatment.

Very low abundance of CTC in blood; cell 
heterogeneity makes it difficult to isolate the 
whole CTC population.
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Although the technicalities of sample collection, management and storage are 
known to be of vital importance to keep the composition and quality of the sam-
ple to be reproducible and reliable, there is no commonly accepted standardiza-
tion protocol for bio-sampling procedures. Variables, such as storage times; 
temperatures and number of freeze-thaw cycles; removal of additives, such as 
heparin to prevent clotting; as well as the consumables, such as collection and 
processing tubes, are important parameters to be considered in order to avoid dif-
ferences in protein composition among samples (31, 32). Bio-sampling optimiza-
tion and standardization are essential steps to improve reproducibility for accurate 
correlations among different studies (33).

DATA ACQUISITION

Proteomics has become a feasible and a promising approach with the advance-
ments in MS methodologies. MS/MS innovations and possible combinations are 
constantly under improvement, and nowadays, it has become the gold standard 
for any kind of proteomic studies. Furthermore, high-resolution mass spectrom-
eters have been recently adapted for high-throughput proteomics (34). MS/MS 
has a high impact in lowering sample complexity by the isolation of precursor 
ions through a mass filter, as well as their fragmentation and further detection by 
high-resolution mass analyzers (35). Moreover, for each of these steps, technolo-
gies have been developed to identify and distinguish peptides more accurately, 
with a better resolution, coverage and reproducibility. Also, computer tools have 
been under constant development to improve the analysis of the complex out-
come data (Table 2). In order to achieve a more accurate protein identification, 
three main approaches have been described: bottom–up (BU), top–down (TD) 
and, more recently, middle–down (MD) (Figure 2).

Bottom–up data analysis

In contrast to TD and MD proteomics analysis, for BU data analysis, a deconvolu-
tion step is not required when implementing ESI, due to the rare generation of 
double- and triple-charged fragment ions (36). Mass spectra raw data are com-
monly processed by Proteome Discoverer or MaxQuant platforms using several 
search engines, such as Sequest, Mascot, Andromeda, X!Tandem and COMET, 
usually against UniProt databases (37–39). MaxQuant software can also deter-
mine protein quantitation and estimate the error of PTM false localization. For 
downstream correlation and clustering analysis, the identified proteins are com-
monly processed in the Perseus platform (38, 40, 41). To reduce data complexity, 
principal component analysis (PCA) has been the method of choice, and also to 
identify the relatedness of the differentially expressed proteins within and among 
samples (39, 41). Moreover, to interpret the potential function of the datasets 
obtained, the DAVID platform is commonly used to enrich them with Gene 
Ontology terms, KEGG pathway information and InterPro protein domains (39, 
42). Additionally, constructed networks are commonly visualized in Cytoscape, 
and in order to identify functional and physical associations among mRNA and 
protein data, the STRING database is used (43). All MS data are usually deposited 
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in the ProteomeXchange Consortium via the PRIDE partner repository for shar-
ing, general availability and further study (44, 45).

Top–down data analysis

In TD data analysis, Proteome Discoverer is commonly used to process raw data 
files, and through its ProSight tools, as well as through MascotTD, identification 
and characterization of intact proteins can be achieved (46, 47). A database search 
using ProSight against specific databases (UniProt, SwissProt and RefSEQ) leads 
to top–down data interpretation and also identifies PTMs within a protein sample 
(48, 49). Furthermore, deconvolution is crucial for data interpretation, and it is 
commonly achieved through Xtract, MS-Deconv and YADA (within ProLuCID), 
among other tools (50). Additionally, in order to give meaning to the identified 
intact proteins/proteoforms and analyze them more deeply, an integrated network 
approach can be followed. As an example, “Proteoform” Suite has been recently 
used for dataset identification and proteoform integration. By assessing its func-
tion using gene ontology (GO) analysis, it also enables the visualization of 

Figure 2 Bottom–up, middle–down and top–down proteomic high-throughput approaches. 
A general view of each of the approaches and the essential steps to follow are shown from 
top to bottom. Up-to-date tools, methodologies and techniques most commonly and 
successfully applied for high-throughput proteomic analyses are highlighted in blue for each 
of the approaches.
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association and abundance within networks through Cytoscape (51, 52). Although 
top–down proteomics is still rapidly evolving, the complexity of the analysis and 
technological issues remain, preventing it to be a typical method to follow when 
studying high-throughput PTMs.

Middle–down data analysis

MD approaches are based mainly on ESI, where multiple peaks of charged frag-
ment ions are generated. Therefore, it is essential to perform deconvolution prior 
to MS spectra interpretation. Several tools have been described for this purpose, 
such as Xtract and YADA (within ProLuCID) or Proteome Discoverer (45, 53). 
The subsequent dataset analysis and database searches are usually performed 
using Mascot or Sequest (44, 45, 53). Moreover, new software tools are under 
development to filter Mascot and Sequest results, such as isoScale, where Mascot 
results are imported and peptides with confidently assigned combinatorial PTMs 
are identified, which means that all the modifications are uniquely validated by 
ions that determine and confirm the localization of a PTM site (45, 53, 54). Since 
MD proteomics research has a considerable impact on PTM research, specific soft-
ware tools have been created to analyze PTMs and relevant data. Among these 
tools are the previously mentioned isoScale software and the Skyline software 
(55). MD proteomics is still lacking established and standardized tools suitable for 
data interpretation, and although algorithms and software tools remain under 
constant development and improvement, this issue is mainly overcome by using 
TD proteomics tools instead. However, due to a different focus (no proteolytic 
peptides), such MD analyses are prone to error.

DATA HANDLING AND WORKFLOWS

The general process of data analysis, shown in Figure 3, involves procedures of 
raw data conversion, deconvolution, normalization, spectral identification, peak 
alignments, validation, statistical modeling, peptide identification, abundance 
measurements, protein inference, data storage (raw and processed), data visual-
ization, eventual further data analysis steps such as dataset comparisons and ulti-
mately deposition of data into public data repositories.

Data processing software

A vast amount of computational solutions have been developed to handle and 
analyze proteomic MS data, ranging in thousands of applications, add-ons and 
scripts, covering every single aspect of data conversion, deconvolution, normal-
ization and alignment, as listed in website (https://omictools.com/proteomics-
category). Currently, the main problem is to find the most appropriate and suitable 
analysis tool rather than to find a way to analyze the experimental MS spectra. 
A good overview of the software landscape of such tools can be found in Ref. (56), 
which also poignantly describes the incompatibility issues when faced with such 
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a huge array of computational tools. Therefore, a focused view of the most  general, 
yet commonly used software solutions is summarized in Table 2.

Figure 3 Data processing workflow from raw MS spectra to identified biomolecules. Raw data 
conversion, deconvolution, data processing and data archiving are the main steps illustrated. 
The most popular tools within each of them are highlighted in blue. Commercial (blue) and 
open-source integrated software platforms (green) for the analysis of proteomic data are 
included. They all encompass modules to manage raw spectral file data, peptide 
identification using search engines, clustering and sample comparison, identification of 
PTMs, quantification, statistical analysis and visualization tools. The most common data 
processing algorithms, data bases and data repositories to release data into the public 
domain are also shown.
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Integrated pipelines

The exuberance of programs and applied algorithms in data processing led to a 
fragmented landscape of often incompatible steps needed to perform MS data 
analysis, and the obvious solution was to integrate these various steps into one 
single workstream implemented in platform tools. A considerable amount of 
reviews of existing platform software programs are available (57–59). Common 
amongst many platform solutions is that they usually have one or more of the 
aforementioned protein/peptide search engines embedded in the workflow. All 
major MS system manufacturers also provide integrated software solutions for the 
analysis of proteomic data and specific applications, thereby eliminating the need 
of having separate software solutions for data acquisition and data processing; 
however, it needs to be noted that MS instrument control might still require 
 vendor-specific applications. As a consequence, data formats of raw MS data are 
specific for the manufacturer of the MS equipment, and inter-operability of soft-
ware solutions is severely hampered and sometimes impossible. This lock-in has 
understandable commercial reasons, but quite a number of open-source solutions 
have also been made available over the years. One of the main differences between 
commercial and open-source solutions is user friendliness, where open-source 
programs might require specialist computing skills in order to implement the 
various components of the software programs. However, in recent developments, 
more user-friendly platforms have been generated that integrate these open-source 
solutions or algorithms. Therefore, most of these open-source applications feature 
a modular design, where individual algorithms and procedures are combined to 
form the entire workflow.

DATA INTERPRETATION AND FUNCTIONAL ANALYSIS

One of the key aspects in proteomic research is the downstream analysis, whereby 
lists of molecules are interrogated using a variety of software tools in order to put 
biological meaning into such lists, extract statistically evaluated parameters or 
match them against other known assemblies (Figure 4). These steps generally 
involve the use of other databases that hold specific information for each mole-
cule, such as functionality, disease association or pathway data. More than 300 
software tools to accomplish various aspects are listed at this website (https://
www.ms-utils.org/) alone, and thousands more have been developed and used in 
proteomics research over the last 20 years. Table 2 lists some of the most common 
tools used in proteomic downstream analysis.

Statistical approaches

The large-scale nature of proteomic data, which reflects not only the biological 
factors but also the technical and experimental factors, often requires algorithms 
to reduce the dimensionality. Statistical tools are an essential part in the analysis 
of such data, ranging from outlier detection methods and imputation of missing 
data to expression profiling and group comparisons, including networks and 

https://www.ms-utils.org/)
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protein cluster detection (60). A vast number of these procedures have been 
implemented as scripts in the statistical open-source tool R, or in one of its deriva-
tives such as Bioconductor, where a number of packages were written specifically 
for use in proteomics applications and data analysis (61). A basic first step in the 
analysis of large MS-derived datasets can also involve a possible enrichment of 
specific protein families or domains. The InterPro database is an integrated docu-
mentation resource for protein domains, families and functional sites, incorporat-
ing other databases with similar scope, namely ProDom, PROSITE, PRINTS and 
Pfam (62). Analysis of the protein landscape using the InterPro resource is gener-
ally a practical and efficient way to interrogate proteomic datasets.

Gene ontology

One of the most prominent and heavily used data resource for downstream analy-
sis is the GO database, whose aim is to generate a dynamic, yet controlled vocabu-
lary that can be used in all eukaryotes as the knowledge of gene and protein roles 
in cells is growing and constantly changing (63). The database unifies similar prior 
approaches from other databases and describes molecules in terms of their involve-
ment in biological processes, their molecular function and their sub-cellular 
 location in a hierarchical way. Originally, this process of annotating functionality 

Figure 4 Downstream data analysis in proteomics research and relationships of analysis scopes. 
Full lines depict direct information flow between the analysis or data types, and dashed lines 
depict indirect associations.
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tags to molecules was done manually, but nowadays it is performed mainly through 
computational tools. There are many software solutions that make use of the GO 
database, and surprisingly, depending on the algorithm used in GO-analysis, the 
results can vary drastically (64). Therefore, one needs to carefully evaluate which 
tools to use and which are trustworthy in their analysis outcomes.

Pathway analysis

Other high-quality, manually curated databases that extend the knowledge of 
molecular functionalities are comprised of pathway databases, and more than 600 
databases within this scope are currently listed at this website (http://pathguide.
org). Pathways, such as signaling and metabolic cascades, can be used to physi-
cally link proteins in a concatenated manner to a series of events with a measur-
able outcome, thereby reducing the complexity of the protein-centric view to a 
more meaningful one through identification of functional biological processes 
(65). They can also be used to bridge or integrate data from one omics stream 
such as proteomics and another like metabolomics. Additionally, many signaling 
cascades, in particular gene-activation pathways, terminate at the point where 
gene expression is induced or repressed, thereby breaking the information flow 
from one signaling event to another via an intermediary step of gene modulation. 
In order to fill this gap, it is necessary to identify potential transcription factors, 
their DNA binding sites and the targeted genes (66). Such information can be 
used for both down-stream pathway mapping and up-stream analysis, thereby 
enabling the exploration of causes leading to the observed proteomic profile 
changes, as well as the consequences of such changes.

Interactomes

An additional aspect to consider is that most proteins do not act alone and inde-
pendently, but rather as an assembly of multiple proteins to perform specific 
actions by forming transient or stable complexes. Examples are scaffolders that 
bring proteins into close proximity in protein signaling cascades, protein regula-
tory networks and structural components. Based on the composition of such 
complexes, a specific protein might be involved in a function that is fundamen-
tally different from the same molecule participating in an assemblage with other 
proteins. Therefore, in order to gain a better understanding of the biological data 
from MS-derived experimentation, the use of protein–protein interaction data-
bases can be particularly helpful (67). Most protein–protein interaction databases 
contain literature-based interaction data that were manually curated and assessed, 
whereas some resources use literature mining tools to populate the database, and 
their data are therefore not necessarily based on experimental observations, but 
rather predicted interactions.

Disease mapping

Further contextualization of proteomic data can also be achieved by interrogating 
disease databases, where disease terms are linked to a collection of associated 
genes derived from the literature. Two such examples are the Online Mendelian 
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Inheritance in Man (OMIM) (68) and DisGeNET (69). Both are expert-curated 
databases that analyze text-mined data to establish a link between phenotypes and 
genes and both have their own web interface to query the databases. While OMIM 
and its derivative table of gene-disease associations termed MorbidMap are only 
covering human genes and disease conditions, DisGeNET additionally includes 
data from animal disease models. Although they are comparable in scope, they 
both do not use the exact same medical term dictionary, which can cause prob-
lems comparing and fusing results using both databases

Integrated frameworks

The diverse nature of biological questions to be answered by proteomics can make 
it difficult for non-experts in data analysis to make the right selection of analysis 
tools, and together with specific requirements such as R scripting or programming 
skills, it can become a daunting endeavor. Yet, new tools are emerging that bring 
together various data downstream processing procedures most commonly used in 
omics research such as Babelomics and Cytoscape that will help researchers to put 
meaning into large-scale datasets, and some of the tools described before have also 
been integrated into these software solutions as well. Babelomics, although in 
principle more useful in gene and array analysis, can also be used in the functional 
characterization of proteomic datasets and other downstream analysis steps (70). 
It includes a comprehensive suite of modules to perform differential expression 
profiling, enrichment analysis, GO and pathway analysis, text mining and protein 
interaction analysis. It is implemented as a web-based application and is freely 
available and accessible. Cytoscape is an open-source and freely available software 
framework for interaction network analysis and is offered as a desktop application 
or a web-plugin (71). In itself, it provides basic functionalities such as graph 
drawing and network layout and construction and enables linking to large data-
bases. It is extendable by providing a run-time environment for other data analy-
sis plug-ins. Currently, approximately 350 additional apps are available.

CONCLUSION

MS, and in particular the LC-MS/MS shotgun proteomics workflow, is widely 
used to identify and quantify sample peptides and proteins. The methodology, 
however, still poses several challenges for large-scale use, such as the 
MS-manufacturer dependent diverse raw data file formats, the relatively large 
false-positive peptide assignment rate and the disconnect between observed pep-
tides and originating sample proteins. There are still quite a number of issues to 
be resolved concerning proteomics in general, such as missing data or data depth, 
where the sensitivity of the mass spectrometer is insufficient to reliably detect low-
abundance molecules, or where the very nature of the molecules under investiga-
tion prohibits certain applications, which is commonly encountered with 
transmembrane spanning proteins. Problems that arise due to masking effects, 
particularly encountered with high-abundance molecules that raise the detection 
threshold, are more of a technical issue that can be overcome with improvement 
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of methodologies, whereas database drift, which is associated with underlying 
reference databases where accession numbers are lost over time due to various 
reasons, can pose real problems in the long term.

While many elegant software solutions of data acquisition to spectral data analysis 
exist, the field is rather fragmented and disjointed when it comes to downstream data 
analysis such as integrating or merging results derived from pathway mapping, termi-
nology clustering and disease analysis. Yet, tremendous efforts have already begun to 
pay off in collating and merging individual applications and algorithms into a more 
cohesive framework. One such framework, the Pan-omics Analysis Database (PADB) 
initiative, has been in existence for more than 15 years and has been successfully used 
to address proteomic and genomic large-scale data analysis in various disease areas 
(72). Another obvious solution is the reuse of existing pipelines and workflows gener-
ated in other omics-streams, in particular from the genomics and transcriptomics 
fields. These tools can be helpful in many ways in proteomics data analysis, yet they 
might also confuse the picture of available tools and analysis workstreams.

Nevertheless, it is very apparent that since proteomics entered the mainstream 
and has become an accepted standard in large-scale biological investigations, 
many breakthroughs were achieved that were unthinkable before. A very new 
view of the small-scale world has opened and, although the most obvious impact 
at that moment was how little we understand in terms of molecular flux and inter-
play, enabled us to start interrogating biological processes on an unprecedented 
scale. In particular, disease analysis, understanding of abnormal phenotypes and 
how to pharmacologically interfere with the protein landscape at various stages of 
disease progression, has started to bear fruit and will continue to do so in the 
foreseeable future.
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