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Abstract: Understanding of biological processes and aberrations in disease condi-
tions has over the years moved away from the study of single molecules to a more
holistic and all-encompassing view to investigate the entire spectrum of proteins.
This method, termed proteomics, has been enabled principally by mass spectrom-
etry techniques. The power of mass spectrometry-based proteomics lays in its
ability to investigate an entire proteome and associated expression or modification
states of a huge amount of proteins in one single experiment. This massive amount
of data requires a high level of automation in data processing to render it into a
reduced set of information that can be used to answer the initial hypotheses,
explore the biology or contextualize molecular changes associated with a physio-
logical attribute. This chapter gives an overview of the most common proteomic
approaches, biological sample considerations and data acquisition methods, data
processing, software solutions for the various steps and further functional analyses
of biological data. This enables the comparison of various datasets as a summation
of individual experiments, to cross-compare sample types and other metadata.
There are many approach pipelines in existence that cover specialist disciplines
and data analytics steps, and it is a certainty that many more data analysis meth-
odologies will be generated over the coming years, but it also emphasizes the
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inherent place of proteomic technologies in research in elucidating the nature of
biological processes and understanding of disease etiology.

Keywords: data analysis; mass spectrometry; proteomics; software; workflows

INTRODUCTION

The development and improvement of high-throughput techniques in “omic” sci-
ence have paved the way not only to a broader view of the molecules involved in
a specific condition but also to generate networks of all interacting elements
(genes, proteins, and metabolites) to gain a better understanding of how a specific
biological system works. Despite the over-abundance of genomics research in this
field, there is so much more complexity left out in a system that can be explained
by the understanding and integration of proteomic data. The proteome is more
complex and is not as stable as the genome, and it is not only based on what is
observed in the genome but also influenced by several factors. Protein expression
depends on tissue type, environmental stimuli, and post-translational modifica-
tions (PTM) that influence its level of activity, structure, function and regulation
(1, 2). Moreover, life depends on proteins, as they are responsible for many
complex processes within a cell, from replication, gene transcription and transla-
tion to cellular senescence and death. Therefore, by having a better understanding
of the proteome, a wider comprehension of cellular regulation can be achieved.
Proteomics is the high-throughput study of proteins incorporating the identifica-
tion, quantitation, analysis and comparison of differential expression of proteins
from samples under specific biological conditions. The characterization of the
proteome involves the identification of structure, function, interactions and
modifications (3).

Because of its improved sensitivity and specificity, mass spectrometry (MS)
proteomics is the most widely used approach, and it is considered the method of
choice to obtain global measurements of proteins (4). The most common and
classic applications of proteomics are to characterize large datasets to create an
inventory of identified proteins in different tissue or cellular samples, as well as to
generate lists of differentially expressed proteins from samples under specific con-
ditions (5). However, these data alone lack a biological meaning, and therefore, it
is essential to pursue additional approaches to allow a better interpretation of
biological processes (6, 7).

Qualitative and quantitative methods are also of importance in network analy-
ses. Qualitative approaches are much more common. Although quantitative net-
work analysis can generate more specialized results and are better adapted to
generate new insights and advancement in biomedical research by unraveling the
significant proteins that interplay in a disease, producing new diagnostic hypoth-
esis, the standardization and homogenization of its analysis still need improve-
ment to establish its reliability and reproducibility when analyzing high-throughput
data (8, 9).

High-throughput technologies and bioinformatic tools are fundamental for
proteomics data interpretation to discover new biological insights on cellular pro-
cesses, disease etiology and biomarker candidates. Although these tools are under
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continuous update and new approaches are implemented, the development of
harmonized benchmarks for datasets and analysis, as well as to establish gold-
standard workflows, is imperative to produce more reliable and reproducible
results, and by doing so, it will help to overcome the challenges of proteomics
data interpretation (10, 11).

The acquisition of a vast amount of high-quality raw spectra using MS is nowa-
days a relatively simple task with the right equipment and involves a high level of
automation, which however leads to a fundamental, and crucial, step to mathe-
matically and statistically interrogate the data and ultimately match it to a library
of known or hypothetical molecules. This is of particular importance in strategies
such as shotgun proteomics and other large-scale MS screens, whereas specific
applications such as selective or multiple reaction monitoring (SRM/MRM) have a
different requirement for the entire workflow and require appropriate specific
software solutions (12). Figure 1 shows a general overview of a typical proteomics
workflow, starting from protein and peptide preparation from tissues to the com-
putational procedures to obtain a list of molecules with associated confidence or
significance scores that can then be analyzed further.

SAMPLE TYPES AND SAMPLE PROCESSING APPROACHES

Body homeostasis is maintained through specialized systems, which are orches-
trated by the interplay between cells, tissues and organs. Each system anomaly
can be better described by specific samples; therefore, to characterize diseases,
it becomes essential to analyze the proteome of the appropriate samples. Many
sample types are suitable for proteomic analysis, including cells, organs, tissues
and body fluids. Biomarker discovery helps to identify pathological states, track
disease progression and improve diagnostics or disease etiology, which are some
of the common applications when using these sample types (13). An important
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factor to be considered for the success of a proteomic approach is the quality
and quantity of the sample, due to the challenge that its complexity implies for
MS techniques. As the detection rates of proteins using MS are directly related
to the absolute quantity of these biomolecules in a sample, high-abundance
proteins tolerate losses during processing quite well. However, the detection
rates of low-abundance proteins are usually much more sensitive towards loss
due to common instrumentation and processes, and therefore, the preferred
workflow is microproteomics, which minimizes this loss and increases the sam-
ple processing efficiency (14). Samples, such as the ones derived from cancer or
tumour cells, exemplify low-abundance protein samples. They should be ana-
lyzed by specific microproteomic workflows with special adaptations of the
techniques for sample preparation, cleaning, fractionation and separation to
ensure minimal losses before analysis and increase sensitivity of nano/
microgram-samples that allows maximal identification of low-abundance pro-
teins (15, 16).

Cell lines

A general overview of disadvantages and applications of each sample-source
type is presented in Table 1. Although heterogeneous cell populations that com-
pose tissues can be individually isolated and analyzed, cell lines are believed to
reflect the protein composition of primary cells and specific tissues. Moreover, the
reproducibility in proteomic analysis using cell lines is one of its main advantages
over other sample types. It also allows proteomic subcellular analysis (17). Several
applications of proteomic analyses using cell lines have been established to inves-
tigate molecular pathways of specified cell types, differences between normal and
disease phenotypes, and different stages of diseases (18, 19). However, problems
in cell line culturing are rather common if no quality control is carried out and can
lead to unreliable results if not detected and treated. The most common problems
with cell lines are genomic instability, infections by microorganisms that could
alter cell turnover and protein expression patterns and cross-contamination lead-
ing to the growth of a mixture of cell types, affecting the results of the study even
before proteomic analysis can be performed (20).

Tissue culture

Proteomic analysis with tissue culture as a sample is also a very informative
approach. It allows the interaction and analysis of the diverse cell types involved
in a disease, leading to a broader view of the biological systems of importance in
pathology. It is basically based on the growth of tissue outside the organism, under
controlled conditions. Tissue samples for this are obtained through surgery from
humans or animals. Tissue culture-based proteomic profiling is useful for under-
standing the biological mechanisms underlying a disease, biomarker and thera-
peutic target identification as well as effects in a sample due to viral, drug or
genetic changes (21). Techniques, such as 3D co-culture systems, fresh tissue
proteomics and tumour spheroid models, have improved the analysis and results
(22). However, its accessibility remains as its major downside, and no accurate
track in disease progression can be performed without re-sampling.
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Organ

Organ samples can be maintained under specific culture conditions, and its differ-
ent cell types can be analyzed. It is the most difficult sample to obtain from
humans, and since biofluids are secreted from several organs and make proteins
more accessible, they are the sample of choice for biomarker discovery and pathol-
ogy research (23, 24). However, reliability and reproducibility are still issues to be
addressed, before they can be eventually established as a good source of clinical
proteomics. Like the tissue samples, animal models serve as a good source of
organ samples. They provide a controlled environment and the possibility to fol-
low up the changes in proteomic profiling throughout the course of a disease. The
major drawback using animal models is that they cannot accurately predict how
a system works in humans (25). However, in order to overcome this issue and to
have a better and broader understanding of the interaction of human proteome
within a system, new engineered model systems have been created, such as mul-
tiorgan lab-on-a-chip platforms, that show a better correlation with human sys-
tems than animal models, mimicking the key aspects of responses like drug
treatment (26, 27).

Exosomes

Besides the analysis of the proteome in cells, proteins secreted by the cells have
gained attention when unraveling the etiology of diseases. All together, these pro-
teins are known as secretome, and a specific component of the secretome that has
been studied in relation to pathology is the exosome. Exosomes are membrane
vesicles, differentiated from other vesicles by size and expression of the CD81
protein. They have a very low abundance of proteins, which is undetectable using
biofluid analysis (28). Among these proteins are some that are specific to the bio-
logical fluid or cell, making the exosomes an interesting source for biomarkers to
advance the identification and understanding of pathologies (29).

Biological fluids

Depending on the purpose of the research, diverse body fluids can be collected
and processed for proteomic analysis. A general overview of disadvantages and
applications of each sample-source type is presented in Table 1. Among the com-
monly analyzed biological fluids in proteomics are blood, serum, plasma, cerebro-
spinal fluid (CSF), urine, saliva and semen. The fluctuation in their protein levels
is expected to reflect pathophysiological conditions; however, some drawbacks
such as protein content, high abundance of masking proteins, and sample insta-
bility can lead to complex interpretations (30). Blood, serum and plasma are the
most common biological fluids in proteomic research due to its non-invasive
nature and its high concentration of protein/peptides, as well as the assumption
that blood reflects the pathophysiological state of several organs. Biofluids such as
urine and CSF are not the most desirable samples for proteomics because they
contain a lower protein/peptide concentration (31). In addition, a complicated
collection process is a hindrance in obtaining a reasonable amount of CSF
sample (31).
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TABLE 1

Biological fluids overview: Applications and

disadvantages

Biological

fluid Applications Disadvantages

Serum and Serum and plasma have Dynamic qualitative and quantitative range of

plasma been used for multiple proteins; small number of highly abundant
proteomics—based biomarker proteins can mask potential biomarkers;
discovery studies. biomarker of interest can be lost upon the
removal of highly abundant proteins.
Cerebrospinal ~ Potential diagnostic utility in Requires a lumbar puncture or a spinal tap, invasive
fluid (CSF) neurodegenerative diseases procedures. Traumatic punctures can alter CSF

including Alzheimer’s, protein expression levels and skew a diagnosis;

multiple sclerosis and small volumes of samples obtained; yield a

Parkinsons. highly dynamic range of protein concentrations;
small number of highly abundant proteins can
mask potential biomarkers; depletion techniques
are neither time nor cost-effective techniques;
biomarker of interest can be lost upon the
removal of highly abundant proteins.

Urine Good source of biomarkers Definition of disease-specific biomarkers is
for urogenital and systemic complicated; significant changes in the proteome
diseases. throughout the day can be connected with the

time of collection, fluid intake, diet, exercise,
circadian rhythms and circulatory levels of
various hormones; presence of MS hampering
salts; lower concentration of proteins/peptides
compared to serum and plasma.

Saliva Most of the biomolecules that Very low concentration of proteins; very rapid
are usually detected in urine protein degradation in whole saliva at room
and blood can also be found temperature, this may occur during saliva
in salivary secretions; about collection and handling.

30% of blood proteins are
also present in saliva.

Semen Applications in research areas Small number of highly abundant proteins can mask
such as reproduction and potential biomarkers; biomarker of interest can be
prostate cancer, and used lost upon the removal of high abundant proteins.
for many purposes in the
diagnosis of male fertility.

Circulating Practical application in diagnosis ~ Very low abundance of CTC in blood; cell

tumour cells and disease treatment, heterogeneity makes it difficult to isolate the
(CTO) determine the prognosis of whole CTC population.

metastatic progression or
relapse, monitor anti-cancer
treatments, understand the
mechanism of metastatic
disease and develop

new strategies in disease
treatment.
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Although the technicalities of sample collection, management and storage are
known to be of vital importance to keep the composition and quality of the sam-
ple to be reproducible and reliable, there is no commonly accepted standardiza-
tion protocol for bio-sampling procedures. Variables, such as storage times;
temperatures and number of freeze-thaw cycles; removal of additives, such as
heparin to prevent clotting; as well as the consumables, such as collection and
processing tubes, are important parameters to be considered in order to avoid dif-
ferences in protein composition among samples (31, 32). Bio-sampling optimiza-
tion and standardization are essential steps to improve reproducibility for accurate
correlations among different studies (33).

DATA ACQUISITION

Proteomics has become a feasible and a promising approach with the advance-
ments in MS methodologies. MS/MS innovations and possible combinations are
constantly under improvement, and nowadays, it has become the gold standard
for any kind of proteomic studies. Furthermore, high-resolution mass spectrom-
eters have been recently adapted for high-throughput proteomics (34). MS/MS
has a high impact in lowering sample complexity by the isolation of precursor
ions through a mass filter, as well as their fragmentation and further detection by
high-resolution mass analyzers (35). Moreover, for each of these steps, technolo-
gies have been developed to identify and distinguish peptides more accurately,
with a better resolution, coverage and reproducibility. Also, computer tools have
been under constant development to improve the analysis of the complex out-
come data (Table 2). In order to achieve a more accurate protein identification,
three main approaches have been described: bottom—up (BU), top—down (TD)
and, more recently, middle—-down (MD) (Figure 2).

Bottom-up data analysis

In contrast to TD and MD proteomics analysis, for BU data analysis, a deconvolu-
tion step is not required when implementing ESI, due to the rare generation of
double- and triple-charged fragment ions (36). Mass spectra raw data are com-
monly processed by Proteome Discoverer or MaxQuant platforms using several
search engines, such as Sequest, Mascot, Andromeda, X!Tandem and COMET,
usually against UniProt databases (37-39). MaxQuant software can also deter-
mine protein quantitation and estimate the error of PTM false localization. For
downstream correlation and clustering analysis, the identified proteins are com-
monly processed in the Perseus platform (38, 40, 41). To reduce data complexity,
principal component analysis (PCA) has been the method of choice, and also to
identify the relatedness of the differentially expressed proteins within and among
samples (39, 41). Moreover, to interpret the potential function of the datasets
obtained, the DAVID platform is commonly used to enrich them with Gene
Ontology terms, KEGG pathway information and InterPro protein domains (39,
42). Additionally, constructed networks are commonly visualized in Cytoscape,
and in order to identify functional and physical associations among mRNA and
protein data, the STRING database is used (43). All MS data are usually deposited
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Figure 2 Bottom-up, middle-down and top—down proteomic high-throughput approaches.

A general view of each of the approaches and the essential steps to follow are shown from
top to bottom. Up-to-date tools, methodologies and techniques most commonly and
successfully applied for high-throughput proteomic analyses are highlighted in blue for each
of the approaches.

in the ProteomeXchange Consortium via the PRIDE partner repository for shar-
ing, general availability and further study (44, 45).

Top—-down data analysis

In TD data analysis, Proteome Discoverer is commonly used to process raw data
files, and through its ProSight tools, as well as through MascotTD, identification
and characterization of intact proteins can be achieved (46, 47). A database search
using ProSight against specific databases (UniProt, SwissProt and RefSEQ) leads
to top—down data interpretation and also identifies PTMs within a protein sample
(48, 49). Furthermore, deconvolution is crucial for data interpretation, and it is
commonly achieved through Xtract, MS-Deconv and YADA (within ProLuCID),
among other tools (50). Additionally, in order to give meaning to the identified
intact proteins/proteoforms and analyze them more deeply, an integrated network
approach can be followed. As an example, “Proteoform” Suite has been recently
used for dataset identification and proteoform integration. By assessing its func-
tion using gene ontology (GO) analysis, it also enables the visualization of
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association and abundance within networks through Cytoscape (51, 52). Although
top—down proteomics is still rapidly evolving, the complexity of the analysis and
technological issues remain, preventing it to be a typical method to follow when
studying high-throughput PTMs.

Middle-down data analysis

MD approaches are based mainly on ESI, where multiple peaks of charged frag-
ment ions are generated. Therefore, it is essential to perform deconvolution prior
to MS spectra interpretation. Several tools have been described for this purpose,
such as Xtract and YADA (within ProLuCID) or Proteome Discoverer (45, 53).
The subsequent dataset analysis and database searches are usually performed
using Mascot or Sequest (44, 45, 53). Moreover, new software tools are under
development to filter Mascot and Sequest results, such as isoScale, where Mascot
results are imported and peptides with confidently assigned combinatorial PTMs
are identified, which means that all the modifications are uniquely validated by
ions that determine and confirm the localization of a PTM site (45, 53, 54). Since
MD proteomics research has a considerable impact on PTM research, specific soft-
ware tools have been created to analyze PTMs and relevant data. Among these
tools are the previously mentioned isoScale software and the Skyline software
(55). MD proteomics is still lacking established and standardized tools suitable for
data interpretation, and although algorithms and software tools remain under
constant development and improvement, this issue is mainly overcome by using
TD proteomics tools instead. However, due to a different focus (no proteolytic
peptides), such MD analyses are prone to error.

DATA HANDLING AND WORKFLOWS

The general process of data analysis, shown in Figure 3, involves procedures of
raw data conversion, deconvolution, normalization, spectral identification, peak
alignments, validation, statistical modeling, peptide identification, abundance
measurements, protein inference, data storage (raw and processed), data visual-
ization, eventual further data analysis steps such as dataset comparisons and ulti-
mately deposition of data into public data repositories.

Data processing software

A vast amount of computational solutions have been developed to handle and
analyze proteomic MS data, ranging in thousands of applications, add-ons and
scripts, covering every single aspect of data conversion, deconvolution, normal-
ization and alignment, as listed in website (https://omictools.com/proteomics-
category). Currently, the main problem is to find the most appropriate and suitable
analysis tool rather than to find a way to analyze the experimental MS spectra.
A good overview of the software landscape of such tools can be found in Ref. (56),
which also poignantly describes the incompatibility issues when faced with such


https://omictools.com/proteomics-category)
https://omictools.com/proteomics-category)

Proteomics analysis

~
HCD
1 1
1 1
1 Proteome Discoverer 1
: Progenesis IQ '
+  Protein Pilot 4
1 ProteolQ 1
v PatternLab
OpenMS w
MaxQuant
Raw data conversion ‘ | Skyline
bl Il
Deconvolution |H ‘ | | ‘
il
To filter potential peptide hits and determine best peptide matches , 24td precessing
¢ algorithms
MLTSARD '; SEQUEST
. YTFPGER o Protein ’ Comet
Data processing IPFMWYA > Identification . X!Tandem
NKPSVRT A Mascot
Databases . Andromeda
UniProt/SwissProt/RefSeq ProLuCID
= ) %‘;{&w‘ Proteome Xchange
- /" PeptideAtlas s congertium
- . : - Raw MS datd
Data archiving Q.Q S JPOST .
ks MassIVE #  Reprocessed data
* iProX ,' Lists of identified proteins
., Panorama " Quantitative data
" OPD N Information about PTMs
Meta-data
\_ GPM J

Figure 3 Data processing workflow from raw MS spectra to identified biomolecules. Raw data
conversion, deconvolution, data processing and data archiving are the main steps illustrated.
The most popular tools within each of them are highlighted in blue. Commercial (blue) and
open-source integrated software platforms (green) for the analysis of proteomic data are
included. They all encompass modules to manage raw spectral file data, peptide
identification using search engines, clustering and sample comparison, identification of
PTMs, quantification, statistical analysis and visualization tools. The most common data
processing algorithms, data bases and data repositories to release data into the public
domain are also shown.

a huge array of computational tools. Therefore, a focused view of the most general,
yet commonly used software solutions is summarized in Table 2.
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Integrated pipelines

The exuberance of programs and applied algorithms in data processing led to a
fragmented landscape of often incompatible steps needed to perform MS data
analysis, and the obvious solution was to integrate these various steps into one
single workstream implemented in platform tools. A considerable amount of
reviews of existing platform software programs are available (57-59). Common
amongst many platform solutions is that they usually have one or more of the
aforementioned protein/peptide search engines embedded in the workflow. All
major MS system manufacturers also provide integrated software solutions for the
analysis of proteomic data and specific applications, thereby eliminating the need
of having separate software solutions for data acquisition and data processing;
however, it needs to be noted that MS instrument control might still require
vendor-specific applications. As a consequence, data formats of raw MS data are
specific for the manufacturer of the MS equipment, and inter-operability of soft-
ware solutions is severely hampered and sometimes impossible. This lock-in has
understandable commercial reasons, but quite a number of open-source solutions
have also been made available over the years. One of the main differences between
commercial and open-source solutions is user friendliness, where open-source
programs might require specialist computing skills in order to implement the
various components of the software programs. However, in recent developments,
more user-friendly platforms have been generated that integrate these open-source
solutions or algorithms. Therefore, most of these open-source applications feature
a modular design, where individual algorithms and procedures are combined to
form the entire workflow.

DATA INTERPRETATION AND FUNCTIONAL ANALYSIS

One of the key aspects in proteomic research is the downstream analysis, whereby
lists of molecules are interrogated using a variety of software tools in order to put
biological meaning into such lists, extract statistically evaluated parameters or
match them against other known assemblies (Figure 4). These steps generally
involve the use of other databases that hold specific information for each mole-
cule, such as functionality, disease association or pathway data. More than 300
software tools to accomplish various aspects are listed at this website (https://
www.ms-utils.org/) alone, and thousands more have been developed and used in
proteomics research over the last 20 years. Table 2 lists some of the most common
tools used in proteomic downstream analysis.

Statistical approaches

The large-scale nature of proteomic data, which reflects not only the biological
factors but also the technical and experimental factors, often requires algorithms
to reduce the dimensionality. Statistical tools are an essential part in the analysis
of such data, ranging from outlier detection methods and imputation of missing
data to expression profiling and group comparisons, including networks and
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Figure 4 Downstream data analysis in proteomics research and relationships of analysis scopes.
Full lines depict direct information flow between the analysis or data types, and dashed lines
depict indirect associations.

protein cluster detection (60). A vast number of these procedures have been
implemented as scripts in the statistical open-source tool R, or in one of its deriva-
tives such as Bioconductor, where a number of packages were written specifically
for use in proteomics applications and data analysis (61). A basic first step in the
analysis of large MS-derived datasets can also involve a possible enrichment of
specific protein families or domains. The InterPro database is an integrated docu-
mentation resource for protein domains, families and functional sites, incorporat-
ing other databases with similar scope, namely ProDom, PROSITE, PRINTS and
Pfam (62). Analysis of the protein landscape using the InterPro resource is gener-
ally a practical and efficient way to interrogate proteomic datasets.

Gene ontology

One of the most prominent and heavily used data resource for downstream analy-
sis is the GO database, whose aim is to generate a dynamic, yet controlled vocabu-
lary that can be used in all eukaryotes as the knowledge of gene and protein roles
in cells is growing and constantly changing (63). The database unifies similar prior
approaches from other databases and describes molecules in terms of their involve-
ment in biological processes, their molecular function and their sub-cellular
location in a hierarchical way. Originally, this process of annotating functionality
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tags to molecules was done manually, but nowadays it is performed mainly through
computational tools. There are many software solutions that make use of the GO
database, and surprisingly, depending on the algorithm used in GO-analysis, the
results can vary drastically (64). Therefore, one needs to carefully evaluate which
tools to use and which are trustworthy in their analysis outcomes.

Pathway analysis

Other high-quality, manually curated databases that extend the knowledge of
molecular functionalities are comprised of pathway databases, and more than 600
databases within this scope are currently listed at this website (http://pathguide.
org). Pathways, such as signaling and metabolic cascades, can be used to physi-
cally link proteins in a concatenated manner to a series of events with a measur-
able outcome, thereby reducing the complexity of the protein-centric view to a
more meaningful one through identification of functional biological processes
(65). They can also be used to bridge or integrate data from one omics stream
such as proteomics and another like metabolomics. Additionally, many signaling
cascades, in particular gene-activation pathways, terminate at the point where
gene expression is induced or repressed, thereby breaking the information flow
from one signaling event to another via an intermediary step of gene modulation.
In order to fill this gap, it is necessary to identify potential transcription factors,
their DNA binding sites and the targeted genes (66). Such information can be
used for both down-stream pathway mapping and up-stream analysis, thereby
enabling the exploration of causes leading to the observed proteomic profile
changes, as well as the consequences of such changes.

Interactomes

An additional aspect to consider is that most proteins do not act alone and inde-
pendently, but rather as an assembly of multiple proteins to perform specific
actions by forming transient or stable complexes. Examples are scaffolders that
bring proteins into close proximity in protein signaling cascades, protein regula-
tory networks and structural components. Based on the composition of such
complexes, a specific protein might be involved in a function that is fundamen-
tally different from the same molecule participating in an assemblage with other
proteins. Therefore, in order to gain a better understanding of the biological data
from MS-derived experimentation, the use of protein—protein interaction data-
bases can be particularly helpful (67). Most protein—protein interaction databases
contain literature-based interaction data that were manually curated and assessed,
whereas some resources use literature mining tools to populate the database, and
their data are therefore not necessarily based on experimental observations, but
rather predicted interactions.

Disease mapping

Further contextualization of proteomic data can also be achieved by interrogating
disease databases, where disease terms are linked to a collection of associated
genes derived from the literature. Two such examples are the Online Mendelian
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Inheritance in Man (OMIM) (68) and DisGeNET (69). Both are expert-curated
databases that analyze text-mined data to establish a link between phenotypes and
genes and both have their own web interface to query the databases. While OMIM
and its derivative table of gene-disease associations termed MorbidMap are only
covering human genes and disease conditions, DisGeNET additionally includes
data from animal disease models. Although they are comparable in scope, they
both do not use the exact same medical term dictionary, which can cause prob-
lems comparing and fusing results using both databases

Integrated frameworks

The diverse nature of biological questions to be answered by proteomics can make
it difficult for non-experts in data analysis to make the right selection of analysis
tools, and together with specific requirements such as R scripting or programming
skills, it can become a daunting endeavor. Yet, new tools are emerging that bring
together various data downstream processing procedures most commonly used in
omics research such as Babelomics and Cytoscape that will help researchers to put
meaning into large-scale datasets, and some of the tools described before have also
been integrated into these software solutions as well. Babelomics, although in
principle more useful in gene and array analysis, can also be used in the functional
characterization of proteomic datasets and other downstream analysis steps (70).
It includes a comprehensive suite of modules to perform differential expression
profiling, enrichment analysis, GO and pathway analysis, text mining and protein
interaction analysis. It is implemented as a web-based application and is freely
available and accessible. Cytoscape is an open-source and freely available software
framework for interaction network analysis and is offered as a desktop application
or a web-plugin (71). In itself, it provides basic functionalities such as graph
drawing and network layout and construction and enables linking to large data-
bases. It is extendable by providing a run-time environment for other data analy-
sis plug-ins. Currently, approximately 350 additional apps are available.

CONCLUSION

MS, and in particular the LC-MS/MS shotgun proteomics workflow, is widely
used to identify and quantify sample peptides and proteins. The methodology,
however, still poses several challenges for large-scale use, such as the
MS-manufacturer dependent diverse raw data file formats, the relatively large
false-positive peptide assignment rate and the disconnect between observed pep-
tides and originating sample proteins. There are still quite a number of issues to
be resolved concerning proteomics in general, such as missing data or data depth,
where the sensitivity of the mass spectrometer is insufficient to reliably detect low-
abundance molecules, or where the very nature of the molecules under investiga-
tion prohibits certain applications, which is commonly encountered with
transmembrane spanning proteins. Problems that arise due to masking effects,
particularly encountered with high-abundance molecules that raise the detection
threshold, are more of a technical issue that can be overcome with improvement
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of methodologies, whereas database drift, which is associated with underlying
reference databases where accession numbers are lost over time due to various
reasons, can pose real problems in the long term.

While many elegant software solutions of data acquisition to spectral data analysis
exist, the field is rather fragmented and disjointed when it comes to downstream data
analysis such as integrating or merging results derived from pathway mapping, termi-
nology clustering and disease analysis. Yet, tremendous efforts have already begun to
pay off in collating and merging individual applications and algorithms into a more
cohesive framework. One such framework, the Pan-omics Analysis Database (PADB)
initiative, has been in existence for more than 15 years and has been successfully used
to address proteomic and genomic large-scale data analysis in various disease areas
(72). Another obvious solution is the reuse of existing pipelines and workflows gener-
ated in other omics-streams, in particular from the genomics and transcriptomics
fields. These tools can be helpful in many ways in proteomics data analysis, yet they
might also confuse the picture of available tools and analysis workstreams.

Nevertheless, it is very apparent that since proteomics entered the mainstream
and has become an accepted standard in large-scale biological investigations,
many breakthroughs were achieved that were unthinkable before. A very new
view of the small-scale world has opened and, although the most obvious impact
at that moment was how little we understand in terms of molecular flux and inter-
play, enabled us to start interrogating biological processes on an unprecedented
scale. In particular, disease analysis, understanding of abnormal phenotypes and
how to pharmacologically interfere with the protein landscape at various stages of
disease progression, has started to bear fruit and will continue to do so in the
foreseeable future.
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