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Abstract: This chapter focuses on several biological sequence analysis techniques 
used in computational biology and bioinformatics. The first section provides an 
overview of biological sequences (nucleic acids and proteins). Bioinformatics 
helps us understand complex biological problems by investigating similarities and 
differences that exist at sequence levels in poly-nucleic acids or proteins. Alignment 
algorithms such as dynamic programming, basic local alignment search tool and 
HHblits are discussed. Artificial intelligence and machine learning methods have 
been used successfully in analyzing sequence data and have played an important 
role in elucidating many biological functions, such as protein functional classifica-
tion, active site recognition, protein structural features identification, and disease 
prediction outcomes. This chapter discusses both supervised and unsupervised 
learning, neural networks, and hidden Markov models. Sequence analysis is 
incomplete without discussing next-generation sequencing (NGS) data. Deep 
sequencing is highly important due to its ability to address an increasingly diverse 
range of biological problems such as the ones encountered in therapeutics. 
A  complete NGS workflow to generate a consensus sequence and haplotypes is 
discussed. 
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INTRODUCTION

It has been estimated that over 12 million different species exist on the planet (1). 
The biodiversity across all life forms including plants, animals, and microbes can 
be attributed to their unique genomic and proteomic composition. Like an instruc-
tion manual that guides about all the sequential tasks to be done in the right order 
to accomplish a process, the biological organisms have all the details in their 
genes, creating combinations of nucleotides resulting in the diversity that we see 
in the biological world. There are two types of nucleic acids, DNA (deoxyribonu-
cleic acid) and RNA (ribonucleic acid). In 1953, Watson and Crick proposed that 
the DNA is made up of two long poly-nucleotide chains comprising of four nucle-
otides, namely adenine (A), guanine (G), cytosine (C), and thymine (T) (2). 
In RNA, however, thymine is replaced by the nucleotide uracil (U) as a comple-
mentary nucleotide to adenine. The strands in both DNA and RNA have a 
 polyphosphate backbone with adjacent nucleotides forming polyphosphate 
 di-ester bonds. DNA is a double-stranded structure; the two chains are twisted 
around each other with hydrogen bonds between the base portions of nucleotides 
holding the two chains together. The sequence of bases in DNA is of crucial 
importance as it contains the code to the formation of diverse proteins and hence 
the complexity and diversity of life. The unique order of bases in DNA results in 
the creation of basic hereditary units called genes. In 2003, the human genome 
project initially estimated 20,000 genes in the human genome (3, 4), and these 
estimates were later revised to 25,000–30,000 genes (5). Based on the sequence 
of DNA, enzymes like RNA polymerase create single-stranded messenger RNA 
(mRNA) that later translate into proteins. This whole process of decoding 
the  DNA  sequence into a protein is referred to as the “central dogma of life” 
(6).  Depending on different organisms, all genes may not code for proteins. 
Composed of amino acids, proteins are much more complicated than nucleic 
acids. There are 20 major amino acids which make up proteins, and each protein 
can have them assembled in different numbers and order. Amino acid sequence of 
proteins is also of crucial importance as it not only determines the physiochemical 
properties of proteins but also determines the different conformations they can 
create in a three-dimensional space (7). These conformational changes result in 
complicated protein structures that in turn allows them to serve unique biological 
functions, for example, transport, functional regulation, and homeostasis. 
Therefore, the importance of nucleotide sequence in DNA/RNA and of amino 
acids in proteins cannot be overstated. 

Sequence comparison of DNA can allow us to compare the differences at gene 
level across different organisms and species. Comparative genomics is a branch of 
science that uses bioinformatics techniques extensively to trace the genes across 
multiple species and study their similarities and differences. Such studies help us 
infer the functional and structural characteristics of newly found or existing pro-
teins. Programmatically, biological sequence analysis is not much different than 
comparing strings and text, and thus, developing the concept of alignment is 
important. Sequences evolving over species and clades through mutations include 
insertions, deletions (indels), and mismatches. When comparing two biological 
sequences, an alignment is generated to view differences between the sequences 
at each position. 
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PAIRWISE ALIGNMENT AND DYNAMIC PROGRAMMING

Pairwise alignment involves comparing two sequences against each other and 
finding the best possible alignment between them. The process involves scoring at 
each position for match, mismatch, and indels. Since matches are preferred over 
deletions, matches are normally assigned the highest scores, and lowest for inser-
tions. Similarity between two sequences is inversely proportional to the number 
of mismatches and indels in their alignment. Although the scoring for alignment 
can be as simple as +1 for match, 0 for mismatch, and −2 for insertion, different 
scoring models have been developed based on the statistically relevant frequen-
cies of one amino acid changing into another. 

Needleman–Wunsch algorithm

Initially developed by Needleman and Wunsch in 1970, the algorithm is based on 
dynamic programming and allows for global or end-to-end alignment of two 
sequences (8). The algorithm involves three main steps, namely initialization, cal-
culation, and trace back. A matrix of dimensions i, j is initialized, where i and j are 
the length of two sequences under comparison. In the second step, F(i, j ) highest 
score for each comparison at each position is calculated,

 F(i, j ) = max {F(i−1, j−1) + s(xi, yi ), F(i−1, j ) − d, F(i, j−1 ) − d}

where “s(xi, yi)” is the match/mismatch score and “d” is the penalty for deletion.
After the maximum score for each position in the matrix is calculated 

(Figure 1), trace back starts from the last cell (bottom right) in the matrix. Each 
step involves moving from the current cell to the one from which the value of the 
current cell was derived. A match or mismatch is assigned if the maximum score 
was derived from a diagonal cell. Insertion/deletion is assigned if the score was 
derived from the top or left cell. After the trace back is completed, we have two 
sequences aligned end to end with each other with an optimal alignment score (9). 

Smith–Waterman algorithm

Initially proposed by Smith and Waterman in 1981, the algorithm allows for local 
sequence alignment and is like the Needleman–Wunsch algorithm (10). Local 
sequence alignment can be used in situations where it is required to align smaller 
subsequences of two sequences. In the biological context, such a situation may 
arise while searching for a domain or motif within larger sequences. The algo-
rithm comprises of the same steps as Needleman–Wunsch; however, there are two 
main differences. Computation of max score also includes an option of 0:

 F(i, j) = max {0, F(i−1, j−1) + s(xi, yi), F(i−1, j) − d, F(i, j−1) − d}

Assignment of “0” as max score corresponds to starting a new alignment. It allows 
for alignments to end anywhere within the matrix. The trace back therefore starts 
from the highest value of F(i, j) in the matrix and ends where it encounters 0. 
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HEURISTIC LOCAL ALIGNMENT

One main challenge in bioinformatics sequence analysis is decoding the vast 
number and length of sequences. These big data of protein and DNA sequence 
databases (over 100 million sequences) come from species across the tree of life. 
Although the local alignment methods based on dynamic programming are quite 
accurate and guarantee to find an optimally scored alignment, they are slow and 
not practical for sequence alignments against databases with millions of sequences. 
The time complexity of dynamic programming algorithms is O(mn), that is, the 
product of sequence lengths. In the initial attempts to improve the speed for 
sequence comparisons, heuristic algorithms like BLAST (11), BLAT (12), and 
FASTA (13, 14) were created. Further advancements in the efficiency of similarity 
search algorithms came with algorithms like LSCluster (15), Usearch (16), 
Vsearch (17), Diamond (18) and Ghostx (19). In general, these algorithms search 
for exact matches and extend the alignment from those matches trying to estimate 
the optimal scoring alignment. 

Basic Local Alignment Search Tool, initially developed by Altschul and col-
leagues (11), is based on the idea that the best scoring sequence alignment would 
contain the highest number of identical matches or highly scoring sub-alignments. 
The algorithm carries out the following steps: (i) reduce the query sequence into 
small subsequences called seeds, (ii) search these seeds across the database for 
exact matches, and (iii) extend the exact matches into an un-gapped alignment 
until a maximal scoring extension is reached. The use of seeds to first search for 

Figure 1 Needleman–Wunsch matrix. The calculation uses scores for match +2, mismatch −1, 
and gap −2. The arrows show the matrix cell from where the value is generated. Red-
coloured cell values show the trace back that creates alignment.
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exact matches greatly increases the whole searching process and the un-gapped 
alignment misses only a small set of significant matches. The accuracy and sensi-
tivity of BLAST made it amongst the most widely used search algorithm in the 
biological world. A variant of BLAST named Position-Specific-Iterative BLAST 
(PSI-BLAST) extends the basic BLAST algorithm (20). PSI-BLAST performs 
 multiple iterations of BLAST and uses the hits found in one iteration as a query for 
the next iteration. Although slower due to sheer amount of calculations required, 
PSI-BLAST is considered a reliable tool to find distant homology relationships. 

Although BLAST and PSI-BLAST are extensively used, recently developed 
methods offer results with higher accuracy and sensitivity. Hidden Markov mod-
els (HMM) have been used efficiently for numerous applications to understand 
and explore biological data. One such example is HMM–HMM-based lightning 
fast sequence search (HHblits) introduced in 2012 (21). The tool can be used as 
an alternative for BLAST and PSI-BLAST and is 50 to 100 times more sensitive. 
The high sensitivity of the tool can be attributed to the algorithm which relies on 
comparing the HMM representations of the sequences. Although profile–profile 
or HMM–HMM alignments are very slow to compute, the prefilter in HHblits 
reduces the required alignments from millions to thousands, thus giving it a con-
siderable speed advantage. HHblits represents each sequence in the database as a 
profile HMM. Prefiltering reduces the number of HMM comparisons for similarity 
search by selecting only those target sequences where the largest un-gapped align-
ment exists, and a Smith–Waterman based alignment reveals a significant E-value. 

MACHINE LEARNING AND SEQUENCE ANALYSIS

Biological data provide amongst the perfect use cases of machine learning and 
artificial intelligence algorithms. This is the reason that researchers in the field of 
bioinformatics and computational biology have used statistical analysis and infer-
ence since the very beginning. Techniques like maximum likelihood (22) and 
neighbor joining (23) have been used for comparative genomics. Naïve Bayes and 
Markov chains have been extensively used for sequence analysis. Logistic regres-
sions, support vector machines, and random forests have been used in numerous 
applications ranging from prediction of protein sequence or structural elements to 
classification of proteins into different structural and functional classes. With the 
development of deep neural networks, we observe an increase in the use of 
the  algorithms like long short-term memory (LSTM) (24) and convolutional 
 neural networks (CNN or ConvNet) (25) to predict the different features and 
behavior of proteins, for example, protein contact prediction and prediction of 
post- translational modifications.

Machine learning methods are broadly divided into two types, supervised and 
un-supervised learning. Based on the inherent features of the data, if it is not 
labeled and cannot be assigned to any type, then classification is done using unsu-
pervised learning. For instance, the classification of proteins into different groups 
is done based on their sequence similarity to each other. K-means clustering algo-
rithm (26) and Markov clustering (27) can be used in unsupervised classification. 
On the other hand, if the data are labeled into different sets, this information can 
be used to train the computer by showing it positive and negative examples. 
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Once the training is complete, the accuracy of training can be tested using similar 
data not used in the training dataset. Any classification technique following 
 training and testing procedures using labeled data is termed supervised machine 
learning. Examples for this type of learning include SVM, HMM, random forest, 
and CNN. 

Hidden Markov Models

HMM is a statistical method that can be used to predict the probability of occur-
rence for a future event. HMMs provide the foundations for a range of complex 
models that can be used for multiple sequence alignment, profile searches or detec-
tion of sequence elements. In order to understand the HMMs and their use in 
biological data, consider the example of binding site recognition on a DNA 
sequence. There is an observable sequence of nucleotides which in the right order 
hides underneath a binding site. We can observe the nucleotide sequence, but the 
presence or absence of a binding site remains hidden to us. HMMs are particularly 
suited for such problems because they use observed frequencies to calculate emis-
sion and transition probabilities to decipher the hidden states. An HMM involves 
two types of probabilities, transition and emission probabilities. The probability of 
moving from one state to another is called the transition probability. The probabil-
ity to observe a variable within a state is called emission or output probability. 

Figure 2 shows a schematic HMM with basic architecture and elements. HMMs 
have been used not only to create sequence profiles but also to create probabilistic 
model representation of protein clusters. Pfam is an example database that clusters 
proteins based on their functional elements and represents them with HMM. The 
downside to HMMs is that they assume a future event depends only on the event 
that happened immediately before and not in the distant past. This creates a limita-
tion to use standard HMMs in complex cases where sequence elements influence 
each other that may be close in the three-dimensional space but sequentially lie far 
from each other. Outside of the biological world, one such example is autocomplete 
or word suggestions. The words appearing in suggestion are directly dependent on 
the word that appeared immediately before the present suggestion. 

Figure 2 Hidden Markov model. The HMM is designed to predict the G rich splice site. 
The value inside the boxes show emission probabilities, that is, the probability for each 
nucleotide to appear while the values outside show transition probabilities to move from 
one state to the next. HMM representation adapted from (9).
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Neural networks

Artificial neural networks is another classification technique with numerous applica-
tions in computational biology. Neuron is the basic unit of an artificial neural net-
work. Each neuron can have multiple input connections with weights assigned to 
each of them. The output value from the neurons is calculated according to its activa-
tion function. A neural network may consist of multiple layers, with each layer con-
taining multiple neurons. Figure 3 shows a multi-layered neural network with 32 
neurons and 192 edges. Neural networks are used in supervised learning and clas-
sification. This approach uses labeled data and follows the main steps listed below: 

(i) Dataset: Divide the data into training sets and testing set (mostly 70–30% 
split or 60–40% split, respectively).

(ii) Training: Use the training data to traverse over the neuron and estimate the 
output. 

(iii) Iterate: Based on the difference between the actual and estimated output, 
calculate the error and adjust the weights accordingly. Repeat step 2.

(iv) Testing: After multiple iterations between step 2 and 3, the model is trained 
and can be tested. Use the test set (unseen data for model) to compute the 
output. As the actual label is known, the accuracy and sensitivity can be cal-
culated based on the correct (true positives or true negatives) and incorrect 
classifications (false positives or false negative).

(v) Validation: The training- and test-set splits are randomized and new sets are 
created from the existing dataset. This new test-train split is then used again 
iterating over steps 2–4. The idea is to create a model independent for gener-
alized datasets. Depending on situations, there can be multiple iterations for 
this step and hence referred to k-fold cross validation. 

Figure 3 Neural network representation. Each node represents a neuron, and the edges depict 
weights that connect the neurons between layers. After each iteration, the weights 
are adjusted to correct for error.
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In order to assess the performance of the model, outputs are calculated from 
different models based on different activation functions or even different neu-
ral network architectures. Sensitivity (recall) and accuracy are calculated 
for  each of the models, and the best performing model should have a high 
recall rate. 

The performance of machine learning in general and neural networks in 
particular depends highly on the quality of the data. A high-quality data would 
have low noise/junk while having a high homogeneity. Noise in biological data 
can refer to ambiguous sequence elements or incorrect labels. A high homo-
geneity results in an equal distribution of diversity in data across different 
data splits. Assuring the good quality of data before model training is a very 
important and time-consuming step for data scientists. If the training dataset 
is not a homogenous representative of the population, it can lead to a biased 
classification in the models. A bias model can show promising results for the 
testing dataset but fails in the actual world. This happens because the model 
is trained to classify only those types of cases that it observed during the 
training, and a bias sample resulted in a skewed perception of the real-world 
scenario. The quality of classification from neural networks also depends 
highly on the training iterations and size of datasets. While the ability for 
high-powered computation has greatly increased in the last decade, coupled 
with biological big data, neural networks can be used to train accurate classi-
fiers. Neural networks have now evolved into their more complex form called 
“Dense Networks” or “Deep learning.” These networks (e.g., LSTM) comprise 
numerous neurons and high number of hidden layers between the input and 
output layers (hence deep network). Although the depth of a network results 
in a better-quality model, they are difficult to train due to the requirement of 
high computing power. 

NEXT-GENERATION SEQUENCING

The last three decades have seen a continuous evolution of sequencing technolo-
gies. Starting from traditional Sanger sequencing to whole genome shot gun 
sequencing by Craig Venter and later next-generation sequencing (NGS) (4). The 
latest amongst these is the “Nanopore,” highly compact and efficient sequencing 
that connects to a computer via USB; it is easily transportable and fits on a small 
desktop. The technology that initially required thousands of dollars per nucleo-
tide is much cheaper now. An NGS pipeline comprises of two main sections: a wet 
lab section involves sample preparation, amplification, and sequencing; and the 
second section involves a bioinformatics workflow that uses the data generated by 
the wet lab to derive a sequence and other information. It is important to note that 
the bioinformatics section involves sequence analysis algorithms that are based on 
statistical and heuristic techniques to analyze and generate sequences. This sec-
tion focuses on the bioinformatics aspect of NGS since it has evolved an ecosys-
tem of computational algorithms and pipelines around it for accurate and efficient 
sequencing. NGS is a massively parallel sequencing technology, also referred as 
high-throughput sequencing, that allows analysis of large fragments of DNA and 
RNA genomes with high sensitivity, much more quickly and cheaply than the 
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previously used Sanger sequencing methodology. In NGS, different platform tech-
nologies follow the same eight major steps (Figure 4):

(i) Library preparation: The first step in NGS workflow involves preparation of 
high-quality and high-yield sequence library. The isolated genomic DNA or 
RNA is sheared into smaller fragments ranging from 150–5000 base pairs (bp) 

Figure 4 Overview of NGS data analysis workflow. The steps involved in high-throughput 
sequencing of biological data: (i) biological samples/library preparation, (ii) amplification, 
(iii) sequence reads, (iv) quality control/read filtration, (v) alignment, (vi) variant calling, 
(vii) annotating variant calls, and (viii) interpretation of variants.
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depending on the sequencing platform. The desired library can be created 
using either of the two fragmentation approaches, mechanical shearing or 
enzyme-based fragmentation (28, 29). Mechanical shearing methods include 
acoustic shearing, needle-shear, sonication, and nebulization, whereas 
enzyme-based methods involve transposons and restriction enzymes (endo-
nucleases) (30). The small fragments known as reads have short overhangs 
(sticky ends) of 5’-phosphate and 3’-hydroxl groups. These ends are repaired 
by adenylation at 3’ ends resulting in adapter ligation that is important for 
amplification. During library preparation, unique barcodes can be added to 
the fragments facilitating multiple sequencing of various samples in the same 
run (31). 

(ii) Amplification: The goal of this step is to create thousands of copies for each 
read. The library is loaded onto the flow-cell, and the fragments are amplified 
using clonal amplification methods such as emulsion PCR or bridge amplifi-
cation. In emulsion PCR, the library is amplified within a tiny water droplet 
floating in an oil solution (32, 33). In bridge amplification, the single-stranded 
DNA from the library is hybridized to the flow-cell’s surface-bound forward 
and reverse oligos that are complementary to the library adapter sequences. 
Hybridized at one end, the singe-stranded DNA then folds over  to form a 
bridge and binds to adapter-complementary oligos at the other end. DNA 
polymerase adds nucleotides to amplify DNA, and a clonal cluster is gener-
ated as the original strand is washed away leaving complementary strands of 
amplified DNA attached to the flow cell. (34).

(iii) Sequencing: The amplified individual sequences are sequenced using differ-
ent platforms and sequencing technologies that include Illumina (Solexa) 
sequencing, Roche 454 sequencing, and Ion Torrent (Proton/PGM sequenc-
ing). Illumina (Solexa) sequencing works by simultaneously identifying DNA 
bases (A, T, C or G), and each base emits a unique fluorescent signal as it is 
added to the nucleic acid chain. Illumina sequencing involves 100–150 bp 
read length. Illumina has some variations that mainly differ in the amount 
of DNA sequenced in one run (Table 1). Roche 454 sequencing is based 
on pyrosequencing; a technique that detects pyrophosphate release, again 

TABLE 1 Comparison of Illumina sequencing platforms

Sequencing 
platforms Run time

Max output 
(Gb)

Max read number 
(million)

Max read length 
(bp)

iSeq Series 9–17.5 hours 1.2 4 2 × 150

MiniSeq Series 4–24 hours 7.5 25 2 × 150

MiSeq Series 4–55 hours 15 25 2 × 300

NextSeq Series 13–20 hours 120 400 2 × 150

HiSeq Series <1–3.5 days 1500 5000 2 × 150

HiSeq X Series <3 days 1800 6000 2 × 150

Different attributes and key features of different Illumina platforms include run time, maximum output, maximum 
read number, and maximum read length.
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using fluorescence, after nucleotides are incorporated by polymerase to a 
new strand of DNA. Roche 454 sequencing produces sequence reads of up to 
1000 bp in length. Like Illumina, it does this by sequencing multiple reads at 
once by reading optical signals as bases are added. Ion Torrent (Proton / PGM 
sequencing) measures the direct release of H+ (protons) from the incorpora-
tion of individual bases by DNA polymerase and therefore differs from the 
previous two methods as it does not measure light. As in other kinds of NGS, 
the input DNA or RNA is fragmented, this time ~200 bp. These sequencing 
technologies result in raw sequencing reads (20 to 1000 bp) stored in the 
FASTQ format which contains both the nucleotide sequence and its corre-
sponding quality scores. These reads can be either “single-ended” or “paired-
ended.” Paired-end reads are produced when the fragment size used in the 
sequencing process is much longer (typically 250–500 bp long).

(iv) Quality control and read filtration: After sequencing is complete, the read data 
are in electronic form and can be processed to generate a whole genome 
or a specific gene sequence using a bioinformatics NGS pipeline. Although 
quality control and filtration is the fourth step in generating a full analyzable 
sequence, it is the first step in a bioinformatics NGS pipeline. Read filtra-
tion involves removing low confidence and erroneous reads from the dataset. 
The amplified raw reads pass through quality control check using FastQC 
(35) that can produce a detailed report on the number, quality, and coverage 
of reads. These methods mostly work on sequence analysis techniques like 
clustering short reads to calculate their frequency and quality scores. It is fol-
lowed by read filtration, clipping of adapters and low-quality base pairs from 
3’ and 5’ ends using software such as CutAdapt (36), trimmomatic (37) and 
others.

(v) Alignment: Once the read quality is acceptable, millions of raw sequence 
reads (single-end or paired-end) are mapped and aligned using either a refer-
ence based assembly (in which reference sequence is available) or de novo 
assembly (in the absence of a reference sequence). The sequence reads of 
variable lengths are aligned using different bioinformatics alignment tools 
such  as BWA (38), Bowtie (39), and TopHat (40). These heuristic-based 
aligners allow fast sequence alignment and generate a consensus sequence 
from the alignment by searching the overlapping portions of the reads and 
merging them into longer reads in order to construct a region of interest, 
that is, genes or a whole genome. The main aim of this step is to generate a 
consensus sequence from the millions of reads. A consensus sequence shows 
the genetic makeup at the time of the sample collection. This step marks 
the completion of sequence generation for a partial or a whole genome. The 
following steps are important for an in-depth analysis beyond generation of 
only a single sequence. 

(vi) Variant identification: NGS is not only time efficient but also provides the 
data for an in-depth sequence analysis. Variant analysis uses the reads file to 
determine the conserved and variable nucleotides at specific positions. As 
this process involves statistical calculations spanning over millions of reads, 
it is both a time and computationally intensive process. Bootstrap resam-
pling of reads can be used to assess the quality of variant calling scores. The 
variations within the genomic sequences such as single-nucleotide poly-
morphisms (SNPs), single-nucleotide variants (SNV), and indels (insertions 
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and deletions) are detected using software such as SAMtools (41), Genome 
Analysis Toolkit (GATK) (42), and VarScan (43, 44). Both SAMtools and 
GATK use the Bayesian probabilistic approach to identify true variants from 
alignment errors, whereas VarScan uses a heuristic approach. Most NGS 
methods for SNV detection are designed to detect germline variations in an 
individual’s genome, whereas the variations that are identified within a popu-
lation are referred as SNPs.

(vii) Annotation: The genetic variants detected are annotated based on the pub-
lished peer-reviewed literature and public genetic variant databases.

(viii) Interpretation of variants: Lastly, medical professionals will interpret these vari-
ants and obtain the patient’s clinical history in order to establish a most accurate 
diagnosis. This includes examining different disease pathways and gene network 
analysis and identifying actual mutations causing a disease.

APPLICATIONS OF NGS IN CLINICAL PRACTICE

The NGS technologies have several applications in research to solve a diverse range 
of biological problems. Comprehensive analysis of NGS data includes whole-
genome sequencing, gene expression determination, transcriptome profiling, and 
epigenetics. NGS has enabled the researches to sequence large segments of the 
genome (i.e., whole-genome sequencing) and provides insights into identifying and 
understanding the genetic variants such as SNPs, insertions, and deletions of DNA, 
and rearrangements such as translocation and inversions associated with diseases 
for further targeted studies (45). Researchers use RNA sequencing (RNASeq) to 
uncover genome-wide transcriptome characterization and profiling (46). Analysis 
involving genome-wide gene expression (i.e., gene transcription, post-transitional 
modifications, and translation) and the molecular pathway analysis provide a deeper 
understanding of gene regulation in neurological, immunological, and other com-
plex diseases. Other applications include studying heritable changes in gene regula-
tion that occur without a change in the DNA sequence. Epigenetics play a significant 
role in growth, development, and disease progression. The studies on epigenetic 
changes in cancer provide insight into important tumorigenic pathways (47, 48). 

CONCLUSION

Sequence analysis is a broad area of research with sub-domains. Alignment of 
sequences can reveal important information concerning the structural and func-
tional sites within sequences. It is used to explore the evolutionary path of 
sequences by identifying the sequence orthologs and homologs. Sequence analy-
sis also involves the use of machine learning techniques for classification and 
prediction of sequence elements. Statistical methods are used to create sequence 
profiles and identify other distantly related sequences with a higher precision. 
Advancement of sequencing technologies has resulted in a next-generation era 
that opened the doors to personalized medicine and haplotype/quasi-species 
detection. With correctly organized NGS pipelines, it is possible to analyze the 
effects of drugs directly at the sequence level. 
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