
37

In: Computational Biology. Holger Husi (Editor), Codon Publications, Brisbane, Australia. ISBN: 
978-0-9944381-9-5; Doi: http://dx.doi.org/10.15586/computationalbiology.2019

Copyright: The Authors.

License: This open access article is licensed under Creative Commons Attribution 4.0 
International (CC BY 4.0). https://creativecommons.org/licenses/by-nc/4.0/

Abstract: The rise of omics techniques has resulted in an explosion of molecular 
data in modern biomedical research. Together with information from medical 
images and clinical data, the field of omics has driven the implementation of per-
sonalized medicine. Biomedical and omics datasets are complex and heteroge-
neous, and extracting meaningful knowledge from this vast amount of information 
is by far the most important challenge for bioinformatics and machine learning 
researchers. In this context, there is an increasing interest in the potential of deep 
learning (DL) methods to create predictive models and to identify complex 
patterns from these large datasets. This chapter provides an overview of the main 
applications of DL methods in biomedical research, with focus on omics data 
analysis and precision medicine applications. DL algorithms and the most popu-
lar architectures are introduced first. This is followed by a review of some of the 
main applications and problems approached by DL in omics data and medical 
image analysis. Finally, implementations for improving the diagnosis, treatment, 
and classification of complex diseases are discussed.
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INTRODUCTION

The amount of available biological data has increased exponentially since the 
emergence of high-throughput technologies such as microarrays and next-gener-
ation sequencing (1), introducing biology to the big data era. These methods initi-
ated the so-called omics revolution, where large amounts of omics data providing 
global information about different properties of genes, proteins or biomolecules 
can be generated within a short period of time in a cost-effective way. These meth-
ods have revolutionized biomedical research by providing a more comprehensive 
understanding of the biological system under study and the molecular mecha-
nisms underlying disease development. The generation of such a large amount of 
data in biomedicine requires the application of advanced informatics techniques 
in order to extract new insights and expand our knowledge about diseases, 
improve diagnosis, and design personalized treatments. In this context, DL algo-
rithms have become one of the most promising methods in the area (2).

DL is a subset of machine learning (ML) algorithms characterized by the use of 
artificial neural networks (ANN). ANNs are inspired by biological neural networks 
in a sense that they are formed by interconnected artificial neurons, which receive 
an input, apply a transformation to the data, and return an output (which can be 
an input for another neuron). DL is gaining popularity as a powerful approach 
that can encode and learn from heterogeneous and complex data, in both super-
vised and unsupervised settings. DL methods have achieved considerable improve-
ments in classical artificial intelligence challenges like language processing, speech 
recognition, and image recognition (3). In the context of biomedical research, DL 
methods have drawn the attention of many researchers, and there is an increasing 
number of applications in omics data analysis. Omics data analysis is frequently 
impeded by low signal to noise ratios, datasets with large number of variables and 
relatively small number of samples or large analytical variance. In this context, DL 
techniques have already over-performed previous methods in terms of sensitivity, 
specificity and efficiency (4). In addition, DL algorithms not only have the chal-
lenge of analyzing each kind of data separately but also have the challenge of 
integrating different omics layers or even other sources of information such as 
medical images or clinical health records. This big data analysis and integration is 
fueling the implementation of personalized medicine approaches allowing early 
detection and classification of diseases or personalized therapies for each patient 
depending on their biochemical background. This chapter reviews the main appli-
cations of DL methods to omics data analysis with a focus on the types of analysis, 
challenges, and opportunities in precision medicine. 

DEEP LEARNING METHODS

DL networks are a class of ML algorithms whose aim is to determine a mathemati-
cal function f that maps a number of inputs, x, to their corresponding outputs, y, 
such as y = f(x). A simple feedforward network y = f(x;w) = LN(LN-1​(….L1(x)) is 
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defined as a composition of N nonlinear transformations Li(1<=i<=N) where 
each function Li corresponds to a hidden layer activation, and w is the learn-
able weight contained in all filter bank layers that are updated during the 
training. 

Under the supervised learning approach, the training of these networks is 
often done iteratively in which a set of training data, also called batch, with 
their ground truth labels are provided to the network as input. After a feed-
forward of this batch through the network’s layers, the output layer computes 
the loss function as the difference between the calculated prediction and the 
correct response. After computing the loss function, all layers’ weights are 
updated so that the loss error of the next iteration is minimized. This weight-
tuning operation is performed using a back-propagation algorithm (5) where 
the error function gradient is propagated in the opposite direction through 
the network after a batch of feedforwards to adjust filter banks, thereby 
learning the value of the parameter w that results in the best function 
approximation.

Deep feedforward neural network (DFF)

DFFs, also called multilayer perceptrons, constitute the simplest DL architec-
ture. In these models, the input information x flows to its corresponding out-
put y through an intermediate function f being evaluated and learned inside 
the neural network layers. These models are called feedforward since there are 
no feedback connections in which outputs of the model are fed back into 
themselves. 

Convolutional neural network (CNN)

CNNs are the most adequate DNNs to deal with high multi-dimensional data 
like medical images. In medical imaging applications, CNNs act like a long 
dimensionality reduction process, binding input images to their classification 
scores outputs (e.g., disease or healthy patient). The building block layers of a 
CNN are convolutional layer, pooling layer, and fully connected layer. Generally, 
DL CNNs are applied with a transfer learning strategy to enhance their perfor-
mance in dealing with relatively small datasets. Transfer learning consists of 
transferring prior learned knowledge from a source domain into a target domain. 
This approach is carried out by using one of the well-known CNNs pre-trained 
on a large dataset such as ImageNet (6), either for further training on the new 
data or to reuse it as a features extractor (7). Rawat and Wang (8) wrote a more 
comprehensive review on CNNs history and their architectures. Some of the 
most influential CNNs are summarized in Table 1.

Recurrent neural network (RNN)

RNNs are neural networks used especially for sequential data in a way that the 
reached output decision at time step t – 1 affects the decision which will be 
reached one moment later at time step t. These networks have two input sources, 
the present and the recent past, which are combined to determine how they 
respond to new data.
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Long-/short-term memory (LSTM)

The main drawback of RNNs is the vanishing gradient problem. To address this 
issue, a variant of RNN called LSTM was proposed. LSTMs aim to preserve the 
error that can be back-propagated through time and layers. In fact, they allow 
recurrent nets to continue to learn over many steps by maintaining a more 
constant error. LSTMs contain information outside the normal flow of the recur-
rent network in a gated cell. Information can be stored in, written to or read from 
a cell, much like data in a computer’s memory.

Deep belief network (DBN)

To learn deep features representation, a DBN (9) is built with a concatenation of 
several restricted Boltzmann machine (RBM) stacked on each other. RBM is the 
core component of DBN models (10), being a generative stochastic model that can 

TABLE 1	 Summary of some of the most influential CNNs

CNN Layers Parameters Comments

LeNet 5 60 000 First CNN to be trained on a large dataset (5, 87)

AlexNet 7 60 million Variation of LeNet. First CNN model to win the 
prestigious ILSVRCa in 2012 (88).

GoogLeNet 22 4 million Winner of ILSVRCa in 2014 (89). The main 
contribution is the inception module which 
is composed of different parallel small 
convolutions.

VGGNet 16 - Initially the runner-up in ILSVRC 2014 behind 
GoogleNet (90)

ResNet 18, 34, 50, 
101 or 152

11.7 million – 
60.2 million

To overcome the gradient vanishing issue, ResNet 
authors (91) proposed using a residual function 
F(x) = H(x) - x, where H(x) is the standard 
mapping function that we want to learn with an 
input x through few stacked non-linear layers. 
By reformulating it as H (x) = F (x) + x, where 
F(x) and x represent the stacked non-linear 
layers and the identity function, respectively. 
Based on their hypothesis, it is better to optimize 
the reformulated residual mapping function F(x) 
than optimizing the original mapping H(x).

DenseNet 121, 161, 169 
or 201

8 million – 
20 million

Presented in (92) to take advantage from previous 
findings regarding CNN’s depth increasing and 
identity shortcut connections. The specificity of 
this new network architecture is that each layer 
is connected to all its previous and next layers. 

aLarge Scale Visual Recognition Challenge.



Deep Learning in Bioinformatics and Medicine 41

be used either for unsupervised or supervised learning. It is composed of two 
layers, an input visible layer and an adjacent hidden layer trained with the aim to 
learn a probability distribution in the input set. Nevertheless, unlike original 
Boltzmann machine (11), intra-connections between hidden–hidden or visible–
visible layers in an RBM are disjointed forming a bipartite graph.

Autoencoder (AE)

Generally, AEs act in an unsupervised manner trying to learn a distribution of 
a given dataset (12) and are often used as a dimensionality reduction network 
(13). AEs try to learn a mapping function M w, b (x) = x' ≈ x throughout 
stacked hidden layers mapping an input data x to its similar identity x' 
Generally, an AE is composed of an encoder and a decoder. The first one is 
trying to learn a set of low-dimensional representation features z, while the 
second is trying to reconstruct a similar copy of x using only learned fea-
tures z. A special case of AEs is sparse autoencoder (SAE) (14), where sparsity 
is introduced into the hidden units by making the number of nodes in the 
hidden layer z bigger than in the input layer x. When several SAEs with only 
their encoding parts are stacked on each other, we obtain a stacked sparse 
autoencoder (SSAE) which is often trained in a bottom–up greedy fashion to 
learn deep feature representation from the data (14).

DEEP LEARNING APPLICATIONS IN OMICS DATA ANALYSIS

DL algorithms are specially suitable to analyze complex, heterogeneous, and high-
dimensional data such as omics datasets (15). This section reviews some cases of 
omics data analyses in which DL methods have provided significant insights, and 
the next section provides an overview of some of the main applications in the 
context of precision medicine, such as biomarker discovery for disease classifica-
tion. A summary of the main applications is provided in Figure 1.

Genomics and sequence analysis

Genomics uses a set of techniques to analyze DNA sequences for studying the 
structure and function of genomes, gene regulation, and genetic alterations that 
can be associated with several diseases. During the last years, DL methods have 
been applied to genomics data to address several questions. For instance, Poplin 
et al. developed a method to detect single-nucleotide polymorphisms (SNP) and 
indels by applying CNNs, which outperformed previous tools (16). In this 
context, other approaches have applied ResNets (17), DFF (18) or CNN (19) to 
predict the pathogenic consequences of genetic variants. In addition, Xie et al. 
applied DFFs and SAEs to predict the effect of genetic variants on gene expres-
sion (20). In the field of functional genomics, DL algorithms have been applied 
to predict enhancers’ sequences and regulatory motifs in the genome (21–25) 
from heterogeneous sources of data (histone modifications, chromatin accessi-
bility and so on). Wang et  al. applied CNNs to quantify transcription factor 
(TF)-DNA binding affinities (26). Oubounyt et  al. combined a CNN and an 
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Figure 1  DNNs have been applied to several biological data types. At the top, there are the 
different types of data. At the middle, there are some examples of DNNs structures. At 
the bottom, there are some of the main applications achieved with these methodologies. 
Source of medical images: TCIA (93) for MRI and CT; Chest X-Ray database (94) for X-Ray; 
MedPix® (https://medpix.nlm.nih.gov) for US; TCGA (58) for the histopathological image 
and ISIC (https://www.isic-archive.com) for the skin lesion. Some graphical elements 
were downloaded from Stockio (https://www.stockio.com/) and Freepik (https://www.
freepik.com/).

https://medpix.nlm.nih.gov�
https://www.isic-archive.com�
https://www.stockio.com/�
https://www.freepik.com
https://www.freepik.com
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LSTM to predict promoter sequences in genes (27). DL algorithms have also 
helped to identify splice junctions through CNN (28).

Genome-wide association studies

Another important field of application of genomics techniques is the screening of 
genetic regions (loci) that associate with diseases/phenotypes, what is termed 
genome-wide association studies (GWAS). In this context, GWAS analyses iden-
tify SNPs in genomic locations that are incorporated into risk prediction models 
traditionally analyzed by polygenic risk scores (29). However, this method pres-
ents certain limitations such as the inability to reduce the missing heritability, 
dealing with epistasis, assumption of a global linear association model or the rep-
lication of results in different samples (30). 

As an alternative, supervised learning algorithm, especially DL models, is 
gaining relevance in this field. Promising results have been shown by Montaez 
et al. (31) that developed a DL framework for the classification of obesity as a 
binary phenotype. However, the predictive capacity of these genetic markers is 
weak because it is based on single locus. More recently, Fergus et al. (32) modeled 
the epistatic effects of SNPs using SSAEs to classify term and preterm births obser-
vations in African-American women. Although it shows a good performance in 
classification and the capture of loci interactions, it suffers from the common 
black-box problem. The selected SNPs loose the GWAS context making it very 
difficult to evaluate their contribution to the phenotype. A different approach is 
the one proposed by PGMRA (33), a deep unsupervised and data-driven ML 
method designed for fusing genotypic–phenotypic analysis in a semi-supervised 
fashion including unsupervised non-negative matrix factorization (NMF) method 
as an AE (13), multiobjective optimization and pooling, interpretable association 
of types of knowledge, and labeling the associations. Each layer has its own learn-
ing process and constitutes the input of the next layer. The results from PGMRA 
are interpretable and have been able to decrease the missing heritability and iden-
tify the epistatic sets of markers that are composed of the genotypic–phenotypic 
architecture of a disease or trait (34).

Transcriptomics

Transcriptomics quantifies the expression level of all RNA transcripts that are pro-
duced in a cell. Transcriptomics raw data are usually processed to generate expres-
sion matrices containing an estimate of expression level of each gene or transcript 
across several samples and conditions, which are typically the input of DL 
methods. There is a broad range of transcriptomics applications in which DL has 
been successfully applied. For example, one of the main goals of gene expression 
data is the analysis of alternative splicing (i.e., the synthesis of different transcripts 
isoforms from the same gene). In this context, Zhang et al. notably achieved to 
analyze differential splicing between different samples using RNA-seq data and 
combining a DNN and a Bayesian statistical model (35). On the other hand, 
CNNs have been applied to identify actual splice junctions from false positives 
generated during RNA-seq reads alignment (36). In addition, Jha et al. proposed 
a model to integrate RNA-seq and CLIP-seq data in order to improve the study of 
alternative splicing (37).
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Another major research focus in transcriptomics is the prediction of other 
types of RNAs, such as non-coding RNAs (ncRNAs), and the characterization of 
their expression. In this context, Hill et  al. proposed an RNN to differentiate 
between coding and non-coding RNAs (38), demonstrating the capability of their 
algorithm to identify ncRNAs without providing their model with previous 
knowledge. Tripathi et al. developed a method to detect long ncRNAs (lncRNAs) 
(39). They reached a remarkable 99% accuracy rate applying a DFF to reference 
databases. Long intergenic ncRNAs (lincRNAs), a type of lncRNAs which are tran-
scribed in intergenic regions, have been also successfully predicted feeding an AE 
with previous knowledge about lincRNAs (40). 

Epigenomics

Epigenomic studies identify modifications in DNA that comprise markers that can 
potentially alter gene expression without modifying the DNA sequence itself. 
There are several epigenetic markers such as DNA methylation, histone modifica-
tion, and specifically positioned nucleosomes. DNA methylation perhaps is the 
most studied epigenetic modification. DNA methylation studies generate meth-
ylation matrices that, like gene expression matrices, can be used for biomarker 
discovery or disease classification problems. In this context, DL methods have 
been used to accurately predict the sequences recognized by DNA- and RNA-
binding proteins using CNNs (41). A key advantage of this method is the capabil-
ity to integrate data from different technologies used in epigenomics studies, like 
chromatin immunoprecipitation (ChIP)-seq or cross-linking immunoprecipita-
tion (CLIP)-seq. DNase I sequencing data have been also used for predicting the 
three-dimensional chromatin state in a cell using CNN (42). On the other hand, 
Wang et  al. accurately predicted DNA methylation state feeding SAEs with 
sequence and Hi-C data (43). Histone modifications, similar to DNA methylation, 
do not affect DNA sequence but can modify its availability to the transcriptional 
machinery. Using CNNs, Yin et al. designed an algorithm to predict these histone 
modifications by integrating sequence and DNase data (44). In addition, Singh 
et al. used a CNN to infer gene expression from histone modifications data (45), 
while Sekhon et al. used a LSTM to predict differential gene expression, also from 
histone modifications data (46).

Proteomics and metabolomics

Proteomics comprises a set of techniques that can be used to quantify expression 
levels, post-translational modifications or localization of proteins in a cell or a 
biological sample. Metabolomics is the study of a complete metabolome, which 
are small molecules that participate in general metabolic reactions. The technolo-
gies used by these omics-streams are, among others, mass spectrometry (MS) or 
nuclear magnetic resonance (NMR), and the first challenge for researchers in this 
field is to assign raw instrumental signals to proteins or metabolites.

In proteomics, the most common experimental strategy is to split proteins 
into short amino acid chains (peptides) and to analyze these peptides in an MS. 
The MS output signals are compared to peptide profiles stored in public or pro-
prietary databases to identify them. However, these databases are still incomplete 
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and inaccurate. In this context, Zhou et al. developed a software that uses a LSTM 
network to predict peptide MS/MS spectra (47). Knowing peptide spectra a priori 
facilitates the task of assigning MS/MS spectra to peptides comparing them to the 
theoretical spectra. Another proteomics application is de novo peptide sequenc-
ing, which is essential for proteins characterization. In this field, Tran et al. sur-
passed previous software combining CNN and LSTMs networks to effectively 
accomplish such a difficult task (48). Once the collection of peptides has been 
sequenced in a proteomics sample, the next challenge is to identify the proteins 
of origin of such peptides. Kim et  al. addressed this problem through a CNN 
(49), getting better results than other dedicated libraries for this task. DL has 
been also applied to predict protein secondary structures from their amino acid 
sequences (50).

NMR technology is essential for both proteomics and metabolomics data gen-
eration. However, it has the technical limitation to return many noise signals that 
should be filtered in order to improve accuracy. Kobayashi et al. automated this 
necessary step by applying CNNs to remove noise peaks from NMR spectra (51), 
thereby improving the performance.

Applying DL methods to metabolomics data is especially challenging because 
they are unable to identify specific factors that contribute to individual samples, 
which is essential in these types of experiments (52). Despite this fact, some DL 
applications have been developed in this field providing interesting results. For 
instance, Date and Kikuchi combined DNN and mean decrease accuracy metric to 
analyze NMR-based metabolomics data (52). Asakura et al. also applied DNNs to 
metabolomics data, overperforming other ML applications (53).

CLINICAL APPLICATIONS AND PRECISION MEDICINE

Precision medicine basically aims to move away from general therapies for a broad 
population to individualized targeted therapies and treatment protocols depend-
ing on each patient’s molecular background (54), or establish preventive medicine 
strategies based on disease susceptibility estimation (55). Omics data have a key 
role in this transition as they enable studying diseases from several simultaneous 
levels (e.g., DNA sequence, gene expression, and medical images) and identifying 
which parts of the complex biological functions are altered. In this new scenario, 
several ML-based approaches have been applied to medicine (56). However, 
although ML has been demonstrated to be useful in several precision medicine 
applications, it has some disadvantages that can be overcome by DL architectures. 
For instance, ML performance has a strong dependence on the data preprocessing 
to extract features, while DL models include this feature extraction (57).

Biomarker discovery and patient classification

One of the most common applications of omics technologies in biomedical 
research is the identification of new biomarkers for early diseases diagnosis, treat-
ment response, and classification. The availability of large amounts of public 
omics data, especially in cancer, such as The Cancer Genome Atlas (TCGA) 
(58),  has permitted the identification of new biomarkers with both DL and 
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non-DL strategies. A promising study applied an SDAE to classify breast cancer 
samples from the TCGA database into healthy or diseased using gene expression 
data (59). In addition, this method identified a set of highly interactive genes 
which could be good cancer biomarkers. Gene expression data from TCGA have 
also been exploited to accurately differentiate samples into different cancer types 
(60). On the other hand, Si et al. used an AE to classify healthy and breast cancer 
patients using methylation data (61), while Chatterjee et al. used CNN to classify 
different cancer types by their methylation patterns, achieving very promising 
results (62). Multiple omics (RNA-seq, miRNA-seq, and methylation data) have 
been combined by Chaudhary et al. to classify liver cancer patients into different 
survival groups (63). Authors used TCGA data to train their AE model, but they 
expect to improve their method using more clinical data in the future. In a similar 
work, Olivier et al. integrated the same kinds of omics data from TCGA to stratify 
bladder cancer patients by their survival chances (64). They used an AE approach 
to split patients into two survival groups. They also used these clusters to identify 
biomarkers linked to survival rates. Biomarkers for Alzheimer’s disease have also 
been proposed using DFFs (65). Another precision oncology application is a tool 
developed by Yuan et al. to classify cancer types based on somatic mutations (66). 
The authors combined a DFF with other statistical techniques. They trained and 
tested their method with TCGA data for 12 cancer types.

Medical imaging

Medical imaging is one of the main tools for the transition from traditional medi-
cine to precision medicine. This section reviews some DL-based imaging applica-
tions in the context of disease classification and diagnosis.

In skin cancer, the first step for diagnosing is based on visual inspections by 
dermatologists. Consequently, skin cancer diagnosis is a classical image recogni-
tion problem where researchers have applied ML methods and image recognition 
approaches. In a recent work, Estava et al. trained a CNN with thousands of clini-
cal images to automatically identify whether a skin lesion is a skin cancer symp-
tom (67). With their method, they obtained results as good as a panel of expert 
dermatologists. Some other studies addressed this problem with CNNs (68), all of 
them with promising results, and it is expected that this research will be translated 
in a few years into mobile applications able to accurately diagnose skin cancer 
lesions.

In the context of brain cancer, tumor segmentation is essential to define the 
shape and size of the tumor and apply diagnoses and therapies accordingly. This 
tumor segmentation is usually made manually by doctors using magnetic reso-
nance imaging (MRI) images. However, this crucial task is very time-consuming 
and subjective. Therefore, there has been a lot of interest in automating tumor 
segmentation from MRI data. This task is very challenging because MRI data con-
sist of 3D images where tumors are very different between patients, and in addi-
tion, they are very heterogeneous images depending on the device and experimental 
procedures employed (69). Several researchers addressed this challenge using 
CNNs (70–72) or SAEs (73).

Analysis of histopathological images is one of the most common tests for can-
cer diagnosis. As with brain tumor segmentation, the analysis of images is manu-
ally performed by pathologists, which is a time-consuming task. In this context, 
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several attempts have been made in order to automate this process. Litjens et al. 
reported a CNNs-based strategy for prostate and breast cancer diagnosis (74), 
although their results are very preliminary and much more research is necessary 
in this field. In addition, Xie et al. recently combined different DL algorithms to 
classify breast cancer subtypes from histopathological images (75). Colorectal pol-
yps have been also classified applying a ResNet (76).

Computed tomography (CT) is used for the diagnosis of several diseases due 
to its capacity to generate three-dimensional anatomic images. Some DL 
approaches will likely enable the use of CT images in precision medicine. Roth 
et al., for instance, proposed the application of CNNs to automatically classify CT 
images into the different human anatomical parts (77). Such classification is the 
first step in many CT-based diagnostic strategies. There are also some specific 
applications in this field, for instance, for pancreas segmentation (78) or coronary 
artery calcium scoring (79).

Ultrasound (US) imaging is another imaging technique with many medical 
applications, for instance, in heart dysfunctions diagnosis. Carneiro and 
Nascimento innovated this field using DBNs to left ventricle endocardium 
tracking, allowing the automatic detection of different cardiopathies (80). On the 
other hand, Lekadir et al. applied a CNN to characterize carotid plaque composi-
tion (81). In addition, Biswas et al. developed a DL method to characterize liver 
US images, allowing the diagnosis and stratification of liver pathologies (82).

Some DL methods have been also applied to X-ray images. For instance, Nasr-
Esfahani et al. used a CNN to detect vessel regions, a necessary step for coronary 
artery disease diagnosis (83). Bone age assessment is a common technique to 
detect growth abnormalities, and currently, it is done manually by comparing the 
X-ray images from databases. However, some authors applied DL algorithms to 
automate this process (84, 85).

Finally, facial images are being used with very promising results for automatic 
disease diagnosis. In a very recent work, Gurovich et al. have presented a facial 
analysis framework for genetic syndrome classification (86). They used patient 
facial images and CNNs to quantify similarities of facial features to hundreds of 
syndromes outperforming clinicians in diagnosis tasks.

CONCLUSION

Omics technologies are not only changing the way we study biomedicine but also 
introducing novel analytical challenges to bioinformatics analysts. DL is a promis-
ing approach to analyze these complex and heterogeneous datasets to drive preci-
sion medicine. This chapter reviewed some of the most common DL applications 
in omics data analysis and precision medicine. Although these methods have been 
used with very promising results, there are important considerations to take into 
account. The most successful application of DL in biomedical research to date has 
been in supervised learning; therefore, a crucial step is to avoid biases in training 
sets as quality of learning depends on the quality of the input data. No single 
method is universally applicable, and the choice of whether and how to use DL 
approaches will be problem-specific. Conventional analytical approaches will 
remain valid and have advantages when data are scarce or if the aim is to assess 
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statistical significance, which is currently difficult using DL methods. Another 
limitation of DL is the increased complexity, which applies both to model design 
and to the required computing environment. The application of DL methods to 
omics and precision medicine is a very new field. Although there are still some 
limitations, there is an increasing interest and research efforts that is resolving the 
major shortcomings and providing with very promising applications. The increas-
ing availability of a larger number of omics datasets, medical images and clinical 
health records is fuelling the promising applications of DL technology that in the 
near future will play an increasingly important role in this field.
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