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Abstract: The study of multifactorial and complex interactions in human diseases 
has been transformed by the omics revolution. The speed and scale of omics 
analysis have increased exponentially in the past decades, and it is now easier and 
faster to generate large amounts of biological data. However, extracting meaning-
ful information from this “sea of data” remains a major challenge. The field of 
integrative biology utilizes a holistic approach to integrate multilayer biological 
data. In this chapter, we introduce concepts and techniques for the analysis of 
single-layer omics data and for integrating multilayer omics datasets to extract 
meaningful and relevant biological insights. Integrative biology is a promising 
approach for the study of a wide range of human diseases. We also highlight some 
current challenges in the field, such as the need for more specialized and interpre-
table methods, while increasing the accessibility of integrative analysis for the 
scientific community.
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INTRODUCTION

Human diseases involve complex interactions between genes, environment 
and lifestyle (1). For example, in type 2 diabetes mellitus, there are many 
behavioral, lifestyle, and genetic risk factors and other pathophysiological 
abnormalities contributing to hyperglycemia. Major mechanisms of the disease 
are impaired insulin secretion and insulin resistance in muscle and liver; how-
ever, other genes and signaling pathways in different tissues are also involved, 
such as increased kidney malfunction, inflammation, and neurotransmitter 
dysfunction (2). Other well-known examples of complex, multigenic, or mul-
tifactorial diseases are tumors (3), infectious diseases (4), and cardiovascular 
diseases (5).

Life sciences research has been revolutionized in past decades by a series of 
genome-wide technologies, starting with the Human Genome Project in 1990. 
The speed and scale of genomics analysis increased exponentially after this, 
facilitated by technologies such as microarrays and high-throughput sequencing 
(6). Genomics is classified as discovery science, along with other omics such as 
transcriptomics, miRNAomics, epigenomics, cistromics, proteomics, metabolo-
mics, and microbiomics. The goal of discovery science is to collect and store data 
describing all the elements of a system (6, 7). As it has become easier and faster to 
generate large amounts of biological data, new challenges in data analysis and 
interpretation are emerging (8).

High-throughput data allow us to visualize processes in a certain layer of 
biological information in an organism or at the single-cell level. A recent exam-
ple is the association of CD177+ neutrophils to Kawasaki disease through 
genome-wide transcriptome analysis (9). Additionally, analyzing the metabo-
lome of coronary atherosclerosis patients enabled discovery of several biomark-
ers of lipid metabolism dysfunctions (10). At a proteomic level, researchers have 
identified proteins in the brain which are associated with the cognitive trajec-
tory in the elderly (11). Finally, the evolution of single-cell sequencing has 
allowed the evaluation of these different layers in greater detail (12). The analy-
sis of omics data has advanced the understanding of human diseases, but it is 
important to remember that these studies represent only one layer of a more 
complex system.

Network science analyzes the interactions between biomolecules (proteins, 
RNA, gene sequences), pathways, cells, organs, and even individuals using 
graph theory methods, and it is an efficient way of extracting information from 
omics data. Through network analysis, it is possible to identify complex pat-
terns among different components to generate scientific hypotheses regarding 
the interactions present in health and disease events (13). For example, a recent 
gene expression network analysis study identified a membrane receptor as a 
potential therapeutic target for an antiepileptic drug (14). Although the integra-
tion of genes into networks gives us a lot of information, it describes only one 
omics level. Therefore, there is a growing interest in the integration of different 
omics data (15). In this chapter, we introduce concepts and tools for the analy-
sis of single-layer biological data and integration of multilayer biological data to 
extract meaningful and relevant biological insights of various human diseases 
(Figure 1).
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APPLICATIONS OF SINGLE-LAYER HIGH-THROUGHPUT DATA

Since the popularization of next-generation sequencing (NGS) and high-through-
put mass spectrometry methods, there has been an exponential increase in the 
generation of biological data, and it is likely that the amount of biological data 
available will continue to increase. The evolution of high-throughput mass 
spectrometry has enabled high-resolution visualization of the proteome and 
metabolome of cells, tissues, and fluids. These data are useful to understand the 
pathogenic mechanisms, contributing to diagnoses, prognoses, and potential 
therapeutic interventions. 

DNA genomes and exomes can be elucidated using NGS. NGS-based tech-
niques have already overcome the use of microarrays for RNA transcriptome 
sequencing by enabling the identification of virtually any transcript present in 
the sample, including unknown transcripts. NGS techniques can also identify 
differentially expressed genes (DEGs) by applying statistical methods to the 
expression data (16). Recently, long noncoding RNA (lnc-RNA) (17) and circu-
lar RNA (18) molecules have been implicated in the regulation of the innate 
immune response and can potentially elucidate infectious, autoimmune, and 
inflammatory disease mechanisms. Despite this, it is important to remember the 
limitations of studying a heterogeneous mixture of cells. Although the cells may 
be similar in morphology, localization or other classificatory factors, it is impos-
sible to understand individual cellular features such as metabolic states, tran-
scriptional levels, and metabolic activation using traditional bulk transcriptome 
sequencing (19).

Figure 1  A framework for integrative biology. High-throughput techniques such as 
transcriptomics, proteomics and metabolomics, in addition to clinical data and other 
databases, can be used to investigate human diseases through an integrative approach.
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Thus, RNA sequencing at single-cell level (scRNA-seq) allows a more accurate 
reconstruction of intracellular and intercellular network interactions (20). 
Since the first scRNA-seq a decade ago (21), the technology has improved and 
several protocols and platforms have been developed to respond to the most 
diverse biological problems, including those related to immune system in health 
and disease (22, 23). Recently, ultra-high-throughput scRNA-seq techniques based 
on the droplets strategy, such as Drop-Seq (24), InDrop (25), and 10X Genomics 
Chromium (26), have gained popularity. These techniques can reduce the cost of 
sequencing while increasing the throughput by allowing a parallel mRNA profiling 
of thousands of individual cells by encapsulating them in droplets (27). Raw and 
processed high-throughput data are stored in several online repositories, making 
them valuable resources for discovery science approaches (7). The content of the 
data repositories ranges from genomics and transcriptomics to epigenetics, protein–
protein interaction, metabolomics, and microbiome data (Table 1).

Examples of big data generation in specific human disease applications 
are numerous. Although we do not focus on any specific disease in this chapter, 
we provide several relevant examples. Zhao et al. performed the transcriptomic 
profiling of glioma, generating 30 billion reads, from 325 samples in different 
stages of malignant progression (28). There have also been efforts to investigate in 
vitro and in vivo response to viral infections, such as influenza and severe acute 
respiratory syndrome coronavirus, generating dozens of transcriptome and pro-
teome datasets (29). More specific events have also been investigated, such as the 
methylome of brain metastases that may help to predict individual responses to 
therapies (30) or the profiling of long non-coding RNA in human hypertrophic 
cardiomyopathy (31). Data generated from a large-scale multi-omic study, includ-
ing genome and transcriptome sequencing and proteomic profiling of a large 
cohort of Alzheimer’s disease patients, could improve our knowledge about this 
pathology (32). In another study, the characterization of post-mortem microbial 
diversity in 188 individuals allowed a better understanding of the ante-mortem 
health condition of some individuals, suggesting that it is possible to estimate the 
health conditions in living populations from these data (33).

TOOLS FOR THE ANALYSIS OF SINGLE-LAYER 
HIGH-THROUGHPUT DATA

Ensuring data quality is an essential step in the analysis and integration of omics 
data. When artifacts and noise are not handled correctly, they can influence the 
results of the analysis (34). The term “garbage in, garbage out,” a common con-
cept in computer science and mathematics, is also applicable in bioinformatics. 
This phrase means that the output data quality is determined by the input data 
quality. Several methods can be used to evaluate and control input data quality. 
One strategy is to determine the statistical significance to avoid false positives, 
known as the false discovery rate (FDR). Despite a recent debate about the 
appropriate use of statistical significance, an FDR value of 0.05 or smaller has 
been generally accepted in academia (35). In addition to the statistical analysis of 
individual layers, it is important to ensure that the data are biologically meaning-
ful. In this case, the fold-change cut-off is used. The fold-change describes how 
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much a gene or pathway is up- or down-regulated, for example, 2 or 0.5, respec-
tively (36). This kind of analysis allows further downstream integration of the 
data, since it is possible to associate, for example, a group of DEGs and the meta-
bolic pathways that they belong to (37).

Numerous tools are used to analyze different types of data. Although it is not 
the focus of this chapter to describe these tools, the concepts of some techniques 
are described here. Bioconductor is a robust software platform used in the analysis 

TABLE 1	 Biological repositories

Database Description Reference website

ArrayExpress Functional genomics data from microarray or 
NGS. Data types include transcription profiling 
(mRNA and miRNA), SNP genotyping, 
chromatin immunoprecipitation (ChIP), and 
comparative genomic hybridization

https://www.ebi.ac.uk/arrayexpress/

BioGRID Curated database. Data types include protein–
protein, genetic and chemical interactions, 
and post-translational modifications

https://thebiogrid.org/

dbGAP Data and results from the interaction of genotype 
and phenotype

https://www.ncbi.nlm.nih.gov/gap/

ENCODE Whole-genome database https://encodeproject.org/

GDC Genomic, epigenomic, transcriptomic, and 
proteomic data from cancer samples

https://portal.gdc.cancer.gov/

GEO Gene expression, hybridization arrays, chips, 
and microarrays database

https://www.ncbi.nlm.nih.gov/geo/

GTEx The genotype–tissue expression includes data of 
tissue-specific gene expression and regulation

https://gtexportal.org/home/

HMDB Human metabolome database http://www.hmdb.ca/

ICGC Cancer genomics database https://dcc.icgc.org/

IMGT Immune-related genes sequence database http://www.imgt.org/

InnateDB Genes, proteins, interactions, and pathways 
involved in the innate immune response

https://www.innatedb.com/

MethylomeDB DNA methylation profiles http://habanero.mssm.edu/
methylomedb/index.html

MGnify Microbiome database https://www.ebi.ac.uk/metagenomics/

miRbase miRNA sequences and annotation http://www.mirbase.org/

PHISTO Pathogen–human protein–protein interaction database http://www.phisto.org/

Reactome Curated pathway database https://reactome.org/

SRA Sequencing and alignment data https://www.ncbi.nlm.nih.gov/sra

STRING Protein–protein interaction networks https://string-db.org/

These databases store raw or processed, and sometimes curated, data derived from different studies and omics 
technologies.

https://www.ebi.ac.uk/arrayexpress/
https://thebiogrid.org/
https://www.ncbi.nlm.nih.gov/gap/
https://encodeproject.org/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://gtexportal.org/home/
http://www.hmdb.ca/
https://dcc.icgc.org/
http://www.imgt.org/
https://www.innatedb.com/
http://habanero.mssm.edu/methylomedb/index.html
http://habanero.mssm.edu/methylomedb/index.html
https://www.ebi.ac.uk/metagenomics/
http://www.mirbase.org/
http://www.phisto.org/
https://reactome.org/
https://www.ncbi.nlm.nih.gov/sra
https://string-db.org/
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of omics data (https://www.bioconductor.org/). In bioconductor, there are several 
packages, mainly in the R scripting language, that provide metrics and methods to 
evaluate reproducibility, identify outliers and noise. For example, the EdgeR pack-
age for gene expression analysis calculates the difference in gene expression for 
different samples and conditions, considering both the FDR and fold-change of 
each gene (38). Bioconductor can also be used to analyze high-dimensional mass 
cytometry (CyTOF) datasets. CyTOF is a platform for collecting high-dimensional 
phenotypic and functional data for single cells (39). For example, CyTOF can be 
used to uncover tissue- and disease-associated immune cell subsets (40). A review 
by Nowicka et al. presents a detailed workflow for CyTOF analyses using the bio-
conductor platform (41).

Metabolomics provides quantification of metabolites in cells, tissues or bio-
logical fluids (42). Several tools are available for the analysis of metabolomics 
data, including the web tool MetaboAnalyst (43) and the R package MetaboAnalystR 
(44). Both carry out analyses with the same workflow: (i) Exploratory data analy-
sis; (ii) Metabolic enrichment analysis and metabolic pathway activity prediction; 
and (iii) Data integration, such as biomarker meta-analysis, joint path analysis, 
and network explorer. The data input for these tools can be a list of genes or 
KEGG orthologs.

Single-cell RNA-seq (scRNA-seq) methods are also widely used in studies 
involving human health (23). To ensure a biologically significant analysis, it is 
necessary to consider the intrinsic variations of the technique, called batch effects 
(45). There are several tools that assist in the batch correction process, most of 
which are based on linear regression, including limma (46), RUVseq (47, 48), and 
svaseq (49). Other promising approaches for batch correction are based on the 
detection of mutual nearest neighbors in the high-dimensional gene expression 
space (50).

The high-dimensional gene expression space is a matter of concern when 
analyzing scRNA-seq gene expression data. The problem with this high-
dimensional space is that it is hard to differentiate the variability between cell 
populations from the variability between cells within a population, as the dis-
tances between cells become more homogenous. High-dimensional data are 
handled through dimensionality reduction and feature selection. Dimensionality 
reduction is a process to project data in a smaller dimensional space, preserving 
some key characteristics of the sample enough to distinguish differences between 
populations (51). While principal component analysis (PCA) is the recom-
mended tool for RNA-seq, T-distributed stochastic neighbor embedding (tSNE) 
is the most popular method for dimensionality reduction of scRNA-seq data. 
PCA is not recommended for scRNA-seq datasets because it is a linear dimen-
sionality reduction algorithm and assumes approximately normally distributed 
data, while tSNE uses different probability distributions that are more suitable 
to scRNA-seq data (51). Nonetheless, a recently developed nonlinear dimen-
sionality-reduction technique named uniform manifold approximation and pro-
jection (UMAP) outperformed other dimensionality-reduction methods for cell 
clustering (52). Feature selection reduces the number of dimensions by exclud-
ing uninformative genes and identifying the most relevant features for analysis 
(53). Feature selection in scRNA-seq can be based on correlated expression, 
highly variable genes (HVG), Michaelis–Menten modeling of dropouts (M3Drop) 
or spike-in methods (51).

https://www.bioconductor.org/)
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As already mentioned, scRNA-seq enables the identification of transcription-
ally distinct cell subpopulations in an otherwise homogeneous cell population. 
Identification of these groups is typically accomplished through clustering 
analysis. Clustering approaches can be supervised or unsupervised. If the method 
uses a known set of gene markers for clustering, it is supervised. Alternatively, 
unsupervised clustering methods can identify groups without prior information 
(53). There are many algorithms designed for unsupervised clustering, but the 
main classes of them are k-means, hierarchical, density-based, and graph cluster-
ing (51). For example, through transcriptional clustering analysis of CD127+ 
innate lymphoid cells (ILCs), Björklund et al. uncovered four different cell 
subpopulations: three different ILCs and natural killer (NK) cells. The group 
further subdivided the ILC3 group into three new transcriptionally and function-
ally distinct populations, contributing to the knowledge of ILC biology, and 
associated inflammatory processes (54). 

Clustering analyses in scRNA-seq data can be very useful and informative, but 
they are not always able to describe dynamic biological processes involved in 
transitions between different states, such as cellular proliferation and maturation 
(12). Such events can be computationally modeled through the reconstruction of 
the cell trajectory and pseudotime estimation (53). Because the cells in a scRNA-
seq experiment are unsynchronized, there are different instantaneous timepoints 
captured that together may represent an entire cell trajectory (55). The term pseu-
dotime refers to an ordering of the cells according to some dynamic process of 
interest, such as development processes occurring over time. Through pseudo-
time estimation, cells in different states of a trajectory can be identified, permit-
ting identification of transcriptional changes, branching points in trajectories, and 
reconstruction of gene regulatory networks (56). Recent efforts have used trajec-
tory and pseudotime methods to better understand human diseases, including 
hepatitis B (57), osteoarthritis (58), muscular dystrophy (59), and Parkinson’s 
disease (60). As bulk tissue RNA-seq data is more accessible than scRNA-seq data, 
there is a great interest in the development of deconvolution tools capable of 
describing the cellular composition of tissue samples, especially in the study of 
tumors (61).

RNA-seq techniques are also useful for studying the high variability of the 
immune system and how this may influence disease progression. The immune 
repertoire is defined as the set of B-cell receptors (BCR) and T-cell receptors 
(TCR) of an organism. The former directly binds antigen to initiate differentia-
tion of B cells into plasma cells, which then secrete antibodies. The latter recog-
nizes antigens bound to major histocompatibility complex (MHC) molecules 
displayed on antigen-presenting cells. A robust adaptive immune system relies 
on the generation of a wide variety of BCRs and TCRs to recognize a varied range 
of antigens. A highly diverse immune repertoire is generated through V(D)J 
recombination. Additionally, the BCRs undergo somatic hypermutation, which 
increases the antigen binding specificity and affinity. Several bioinformatics tools 
have been developed to accurately determine the immune repertoires from 
genomic or RNA sequencing data, with a focus on the hypervariable complemen-
tarity-determining region 3 (CDR3) sequences. Some of these tools are specific to 
BCR or TCR, such as TRUST (62) and V’Djer (63), while others can work with 
both receptor types, such as MiXCR (64). There are also specific tools for scRNA-
seq data, such as BASIC (65).
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APPLICATIONS OF INTEGRATIVE BIOLOGY TO 
HUMAN DISEASES

Diseases are accompanied by many simultaneous changes in cell and molecular 
dynamics, such as gene and protein expression, metabolic pathways, and tissue 
cell population composition, that can be the cause or consequence of the disease 
state. An integrative approach to investigate these complex changes and interac-
tions can enable a more holistic understanding of immunology, including inhibi-
tion of viral replication, generation of protective immune responses, pathogen 
evasion of innate and adaptive immunity, and differences in susceptibility between 
individuals and populations (66).

The central dogma of molecular biology states that the information is 
transferred sequentially from mRNA to proteins (67). However, this does not 
always mean there is a perfect correlation between mRNA and protein expres-
sion, highlighting the importance of analyzing multiple layers of biological 
data (68). In fact, now it is clear that the correlation between mRNA and pro-
tein expression depends on the cell state. In steady-state conditions, mRNA 
and protein levels have a strong positive correlation, but during dynamic 
conditions, including stress responses that are cause or consequence of dis-
ease, post-transcriptional processes cause deviations from an ideal positive 
correlation (69).

MicroRNAs (miRNAs) are short and endogenous RNAs that play important 
regulatory roles by suppressing mRNA translation by directing mRNA degrada-
tion. Again, we might expect a negative correlation between miRNA levels and 
target protein expression, but the correlation patterns are more complex than 
expected (70). Nunez et al. observed positively correlated miRNA and mRNA in a 
mouse model during early stages of alcohol dependence, suggesting that early 
miRNA activation may play an important role to limit the effect of alcohol-induced 
genes (71). Recently, an extensive investigation revealed the miRNA–mRNA cor-
relation profile in human peripheral blood mononuclear cells (PBMC) in a rheu-
matoid arthritis cohort (70), leading to a better understanding of this and other 
autoimmune diseases (72). Similar efforts are being applied to profile the miRNA-
mRNA correlation in tumorigenesis (73).

As personalized and precision medicine evolves, integration of metabolo-
mics data with other layers of information becomes increasingly important. 
Nakaya et al. (74) used a systems analysis approach to uncover shared molecular 
signatures that predict influenza antibody response after vaccination. Briefly, 
they were able to identify transcriptomic signatures of innate immunity that 
could predict influenza vaccine-induced antibody titers. In addition, they 
uncovered many miRNA regulators of the response after vaccination. Another 
example study showing metabolomics integration with proteomics data uncov-
ered signatures of innate immunity, T-cell signaling, and platelet activation 
related to clinical tolerance to Plasmodium vivax (75). Another study showed the 
association between metabolic pathways and chronic obstructive pulmonary 
disease (COPD) phenotypes, applying an unbiased metabolomics and transcrip-
tomics approach, enabling the determination of phenotypic and outcome 
differences (76).
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The study of genetic variability is important in the context of human health, 
since it may be related to differential disease risk in a population. Genome-wide 
association studies showed that approximately 80% of single-nucleotide poly-
morphisms (SNPs) associated with human phenotypes are located within non-
coding regions, showing the potential association between these regions and the 
regulation of differential gene expression in health and disease (77) or in phar-
macologic susceptibility (78). These non-coding regions may explain part of the 
variation and tissue-specificity in mRNA expression levels (79). By integrating 
genomic and transcriptomic data, scientists can find other expression quantita-
tive trait loci (eQTLs) responsible for partial or complete alteration of gene 
expression (80).

Proteogenomics is an integrative approach between genomic and transcrip-
tomic data, which has greatly advanced the study of several pathologies, especially 
cancer (81). This approach includes two methods of extracting information. In 
one method, data from transcriptomics and genomics are used to create protein 
databases with new peptides that are not present in reference databases. 
Alternatively, transcriptomics data can be used to validate genomics data and 
refine gene models (82). For example, Mun et al. performed an extensive prote-
ogenomic characterization of patients with gastric cancer by integrating transcrip-
tional, protein, phosphorylation, and N-glycosylation data (83). The group 
identified markers that predict a patient’s prognosis and how they would respond 
to treatment. Similarly, this integration of proteogenic data has allowed a better 
understanding of colon cancer pathology and identification of potential therapeu-
tic targets (84). Integration of metabolome, proteome, and clinical data has also 
been a powerful approach in fields other than oncology. For example, potential 
biomarkers for sepsis prognosis have been identified, which may aid in the devel-
opment of new therapies for patients at higher risk of death (85).

To understand the response to herpes zoster vaccine, Li et al. (86) conducted 
a multi-layered study combining different datasets including transcriptomics, 
blood cell population flow cytometry, and plasma cytokine analysis to identify 
molecular networks correlated with adaptive immunity responses. The analysis 
revealed high correlations between distinct molecular signatures and biological 
convergence between the pathways identified by the metabolomic and transcrip-
tomic data. These convergences suggested that the transcription program of blood 
cells is potentially regulatory in response to metabolic stimuli. For example, the 
same gene network, consisting of heme biosynthesis, BCR signaling, and inositol 
phosphate metabolism, was highly expressed in subjects with higher viral load. 
There were also significant differences between young and old adults, including 
NK cells frequency and expression of inflammatory genes. This contextualization 
of immune responses related to vaccination provides a good example of how these 
new integrative biology techniques may aid in research involving complex molec-
ular responses such as biomarker identification and development of new immu-
nization protocols.

The integration of omics data in health and disease has enabled a more detailed 
understanding of molecular interactions. This approach has improved the ability 
to study highly complex diseases including psychiatric diseases (87), pulmonary 
diseases (88), cardiovascular diseases (89), and the role of the microbiota in 
inflammatory bowel diseases (90). 
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TOOLS FOR INTEGRATIVE ANALYSIS

The molecular complexity of many diseases and advances in data integration have 
popularized studies that integrate different levels of biological data. However, 
integrative data analysis depends on the data types available and the aims of the 
study. Consequently, with the emergence of multi-omic data, new challenges have 
appeared for the development of appropriate statistical computational methods to 
integrate these data. Methods are required for the integration of the same type of 
data collected from different studies and the integration of different types of data 
collected from the same sample, termed horizontal and vertical data integration, 
respectively (Figure 2) (91). Although not discussed in detail, we briefly review 
some concepts of omics data integration.

In addition to horizontal and vertical data integration, multiple layers of data 
can be integrated using top–down and bottom–up approaches. Bottom–up inte-
gration consists of associating genomics and/or transcriptomics data with pro-
teomics, metabolomics and/or clinical data in order to predict global changes in 
a cell or organism, such as phenotypic responses and key pathways. In contrast, a 
top–down approach consists of parallel clustering of different categories of data 
for automated and unified integration (92).

One bottom–up method used frequently in the integration of multiple omic 
layers is the search for correlations (93). This approach is based on regression 
methods and seeks to find elements that vary simultaneously in different layers, 
such as the search for SNPs and eQTLs that influence gene expression and are 
responsible for disease phenotypes (94). Co-expression network analysis is an 
informative bottom–up approach that can improve our knowledge in functional 
annotation and disease gene prediction (95). Recently, an integrative tool, 
CEMiTool, for the identification of co-expression modules was developed (95). In 
addition to unsupervised identification of co-expression modules, this tool allows 
automated integration with gene set enrichment analysis (96), which can identify 
whether the co-expression gene module is enriched for some relevant biological 
pathway and associated with a phenotype. This tool can also integrate co-
expression modules with protein–protein interaction data, which is useful to 
identify the key regulators of a network (95). Other bottom–up approaches 
include clustering of DNA, mRNA, miRNA, protein, metabolite, epigenetic, 
network, and manual annotation data for later integration. These approaches are 
concisely described in a review by Yu and Zeng (92).

MixOmics is a multi-omic integrative computational tool based on the R lan-
guage that is useful in a wide variety of omic studies. It is dedicated to the multi-
variate analysis of biological datasets with a specific focus on data exploration, 
dimensionality reduction, and data visualization (97). It offers a wide range of 
supervised statistical analysis methods that integrate multiple omic data to analyze 
relationships between these data. The methods include canonical correlation 
analysis, partial least squares regression, and PCA to perform discriminant 
analysis, horizontal or vertical integration, and the identification of molecular 
signatures (98, 99). Assuming the data have been normalized by specific methods 
(depending on its nature), mixOmics can explore and integrate different types of 
biological data. The input can be based on both discrete and continuous data such 
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Figure 2  Horizontal and vertical data integration. Horizontal integration joins the similar data 
type of n datasets for analysis, while vertical integration combines different data types from 
the similar types of samples. Vertical analysis can integrate individually generated results 
(middle panel) or extract complex patterns directly from the data in parallel (bottom).
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as mass spectrometry, microarray, proteomics, and metabolomics, or data gener-
ated by sequencing, such as RNA-seq, 16S, and metagenomic shotgun.

In contrast, a top–down approach consists of the parallel clustering of different 
categories of data for automated and unified integration (92). Top–down methods 
consist of statistical and machine learning tools such as joint models (100), 
Bayesian analysis (101), factor analysis (102), multiple kernel learning (103), 
deep learning (104), and simultaneous clustering (105). There are many useful 
data integration methods, and the method selection depends on the nature of 
the data to be analyzed. With the increasing availability of data on public data-
bases and the development of new methods, the tendency is for greater use of 
omic data integration.

CHALLENGES

With the continued advancement of NGS technologies, omics science is expected 
to move towards an increasingly integrative approach. With this shift, managing 
the vast amount of data generated and integrating these data in a significant way 
remains a challenge (106, 107). There are concerns about the data reproducibility 
and accessibility (108) and efforts to overcome this, such as the FAIR principles 
(109). The FAIR guideline suggests ways to data become Findable, Accessible, 
Interoperable, and Reusable. Additionally, curated databases and improved soft-
ware-database interoperability would facilitate data integration (110). Another 
part of the solution is the popularization of open source sharing platforms, such 
as GitHub, enabling developers and users to share and review their codes and 
scripts, as well as develop tools in collaboration with other researchers (111). 
A particular issue is to go beyond finding correlations to infer causality between 
two or more elements, such as concentration of metabolites and levels of gene 
expression (112). This remains a great challenge for integrative biology, which 
relies on molecular studies, both in vitro and in vivo, to attest the causation (93). 
It is important to develop new analytical methods to produce results that are easy 
to interpret, since the interpretation of the results can be another challenge as 
great as the creation of new tools (110). Finally, the evolution of integrative biol-
ogy also depends on massive computational resources, both for data storage and 
analysis (113).

CONCLUSION

Although a huge amount of biological data is being generated at incredible pace, 
this is not being translated to knowledge. A large fraction of the data has the 
potential to be applied in clinical practice, but they are idle in repositories or wait-
ing for the development of proper methods for data integration and interpreta-
tion. Traditionally, these data are generated by conventional hypothesis-driven 
methodologies. In this approach, the hypothesis is stated, tested and then accepted 
or refuted, based on the outcome. Alternatively, the popularization of high-
throughput technologies spreads the data-driven hypothesis, or hypothesis-free, 
approach. In data-driven hypothesis definition, models are created after data 
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analysis and only then a hypothesis is formulated and tested. This integrative and 
systems approach can reproduce complex disease states and, therefore, has higher 
chances of clinical implementation. Hypothesis-driven generation and data-
driven hypothesis generation are non-exclusive, since the latter can use the data 
produced by the former to create useful models for new hypothesis-driven stud-
ies. In this context, collaboration between bioinformatics and wet lab experts is 
essential for integrating multiple layers of information, which is, and will continue 
to be, very useful for elucidating how disease processes occur and for the develop-
ment of new therapeutic interventions.
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