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Abstract: Hepatocellular carcinoma is the fastest growing cause of cancer-
related mortality worldwide, with few treatment options and a 70% recurrence 
rate. This trend is driven largely by the recent surge in incidence of metabolic 
syndrome, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. 
Given the central role of the liver in lipid homeostasis, altered hepatic lipid 
metabolism has been identified as a contributing factor to hepatocellular carci-
noma. Neoplastic cells are highly dependent on lipid metabolism as a source of 
energy and to support rapid cell division, and fatty acid derivatives play key 
roles in cell signaling. Aberrant expression of liver fatty acid–binding protein 
and changes in the ratio of saturated to unsaturated triacylglycerols have been 
shown to be associated with disease severity and subtype. This chapter focuses 
on metabolic reprogramming and dysregulation of lipid metabolism as hall-
marks of hepatocellular carcinoma.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the fastest growing cause of cancer-related 
mortality, with 840,000 new cases per year worldwide, nearly half of which are in 
China alone, due in part to the high (5.4%) incidence of chronic hepatitis B virus 
(HBV) infection (1–3). The incidence of HCC in the United States has tripled over 
the last four decades, resulting in more than 30,000 new cases and 20,000 deaths 
per year (1, 4, 5). HCC accounts for 75–85% of cases of primary liver cancer and 
is the sixth most common cause of cancer and the fourth most common cause of 
cancer-related death (3). A number of approaches have been developed to treat 
HCC, including liver resection, ablation, and transplantation. However, the dis-
ease is often asymptomatic at early stages and defies early detection. While the 
short-term prognosis for HCC has improved, the long-term prognosis remains 
poor, with a 5-year survival rate of 17% (6–8). Surgical resection provides the best 
chance for recovery, but the cancer is often detected too late for the treatment to 
be effective, and only about 15% of patients are eligible (9). Even in the case of 
successful resection, the 5-year rate of HCC recurrence remains about 70 % (10).

HCC is a complex disease with a number of known or suspected etiologies, 
including hepatitis B or C virus infection; non-alcoholic steatohepatitis (NASH); 
hemochromatosis; alcohol abuse; primary biliary cirrhosis; α-1 antitrypsin 
 deficiency; Wilson’s disease; and carcinogens such as aflatoxin B1, thorotrast, 
polyvinyl chloride, and carbon tetrachloride (11, 12). However, inflammation 
associated with viral hepatitis and fatty liver disease is thought to be a common 
cross- etiological factor that drives the development of over 90% of liver tumors 
(13). HBV accounts for 85% of HCC cases in endemic regions such as Southeast 
Asia and sub-Saharan Africa, whereas HCV is the leading risk factor for HCC in 
Europe and North America. While HBV and HCV have traditionally driven the 
majority of HCC cases, the proportion of non-viral HCC cases, especially due to 
NASH, is expected to increase exponentially, and the overall number of HCC 
cases is expected to skyrocket over the next decade due to increasing incidence of 
obesity and diabetes (14). Estes et al. projected that by 2030, the number of 
NAFLD cases in the United States will increase by 21%, NASH cases by 63%, and 
HCC cases by 137% (14).

The incidence of fatty liver-associated HCC is increasing in many western 
countries due to the alarming increase in the number of adults and children with 
obesity, diabetes, and metabolic syndrome (15). Lipid metabolism is among the 
liver’s most critical functions. Along with proteins, carbohydrates, and nucleic 
acids, lipids represent one of the four main classes of biomolecules. Starvation 
depletes fat reserves and causes muscle wasting, whereas excessive caloric intake 
accompanied by lack of physical activity can lead to obesity, in which fat accumu-
lates in the liver and adipose tissue, disrupting lipid homeostasis and promoting 
insulin resistance. Altered lipid metabolism is thought to induce inflammation 
and promote fibrosis (16). Defined as having a body mass index (BMI) greater 
than 30 kg/m2, obesity is one of the greatest public health challenges of this cen-
tury, affecting 700 million people worldwide (17). Now classified as a disease in 
its own right, obesity is a leading preventable cause of death and is associated 
with increased risk of diabetes, cardiovascular disease, depression, and several 
types of cancer, including esophageal adenocarcinoma, leukemia, non-Hodgkin’s 
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lymphoma, multiple myeloma, malignant melanoma, and endometrial, colorec-
tal, breast, prostate, thyroid, and renal cancers (18). Lipids play an intriguing role 
in the development of HCC, and factors associated with lipid and energy 
 dysregulation, such as obesity (19), diabetes (20), and hepatic steatosis, are risk 
factors for HCC (21). Although the different viral, genetic, chemical, and 
 metabolic etiologies of HCC vary with respect to early events leading to hepato-
carcinogenesis, they increasingly converge on a set of shared biochemical 
 pathways, of which lipid metabolism is a central player. For example, HBV 
 infection, alcoholic liver disease, and NASH lead to increased lipogenesis and 
reduction of lysophosphatidylcholine (22, 23).

The pathophysiology of metabolic syndrome is complex and involves multiple 
organ systems, but in the liver the presence of excess fat promotes inflammation 
and can lead to cycles of liver cell injury and repair. Damage to the liver is often 
progressive and can result in fibrosis and eventually cirrhosis, but the process is 
often partially reversible at the early stages with changes in diet and lifestyle 
(Figure 1).

NAFLD, CIRRHOSIS, AND HCC

While the long-term progression from NAFLD to NASH to cirrhosis to HCC over 
a period of decades is frequently observed, there are exceptions. Being overweight 
increases the risk of HCC by 17%, and obesity increases the risk by 89% (24). In 
patients with chronic HCV or HBV infection, the presence of NAFLD has been 
shown to increase the risk of oncogenesis in a synergistic manner (25), suggesting 
that lipid dysregulation is an independent risk factor for HCC.

NAFLD is on track to become the leading cause of non-cirrhotic HCC, in 
which liver cancer develops independently of cirrhosis (26–29) and might con-
tribute to cryptogenic cirrhosis, in which the otherwise non-symptomatic cirrho-
sis is discovered incidentally (30, 31). The mechanism underlying cryptogenic 
HCC is unclear but may involve progression from NAFLD-based steatosis to lipid 
catabolism such that the underlying steatosis is no longer observable (32, 33). 

Figure 1 Potential routes of progression from fatty liver to hepatocellular carcinoma. Most steps 
are at least partially reversible with lifestyle changes, but a fraction of patients at each stage 
progresses to more severe liver inflammation and fibrosis until loss of hepatic function 
becomes mostly permanent. In some patients, HCC can develop on a more rapid course 
without cirrhosis.
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Some aspects of lipid dysregulation, such as attenuated lysophosphatidylcho-
line levels, have been found to be common in patients with NASH and cirrhosis 
(34), whereas levels of the non-essential amino acids such as valine and isoleucine 
were elevated in patients with cirrhosis (35, 36). Aside from its direct risks, cir-
rhosis is also the primary risk factor for HCC, and more than 90% of patients with 
HCC have cirrhosis (37). In a study of 34,932 patients with cirrhosis, 1,960 
patients developed HCC (5.6%) within 1.3 years (37). Currently, NASH-related 
cirrhosis accounts for about 10% of liver transplantations (38).

HBV AND HCC

Several studies have reported changes in lipid metabolism associated with HBV 
infection and liver regeneration. Park et al. reported significant changes in phos-
phatidylcholine composition in HBV-infected mouse livers and found that expres-
sion of choline-phosphate cytidylyltransferase A (PCYT1A) was significantly 
delayed (39). Using an HBx transgenic mouse model, Teng et al. tracked changes 
in lipid profiles during HBV-induced HCC and observed a biphasic peak in tri-
glyceride, cholesterol, and fatty acid levels in serum and liver tissue (40). The first 
peak was associated with non-specific pro-inflammatory responses to oxidative 
stress in mouse hepatocytes. Lipid profiles then transiently resolved at 6 months 
before peaking again at 12 months, representing a terminal metabolic shift and 
formation of fatty nodules. The peaks were associated with the upregulation of the 
following five lipid metabolism-related genes, which were subsequently validated 
in human HBV-related HCC tumors: arachidonate 5-lipoxygenase, lipoprotein 
lipase, fatty acid–binding protein (FABP) 4, 1-acylglycerol-3-phosphate 
O-acyltransferase 9, and apolipoprotein A-IV (40). These results suggest that 
HBV-mediated perturbation of lipid metabolism plays a role in the mechanism of 
hepatocarcinogenesis.

DE NOVO LIPOGENESIS IN HCC

Given the role of lipids as structural, signaling, and energy storage molecules, 
there are a number of ways that lipid dysregulation could contribute to hepato-
carcinogenesis. Increased de novo lipogenesis and enforced glycolysis appear to 
be hallmarks of liver cancer (41). One reason for this is the severe metabolic 
stress experienced within the poorly vascularized tumor core during rapid pro-
liferation causing a nutrient-poor, hypoxic microenvironment on the brink of 
necrosis or apoptosis. Fatty acid oxidation can continue to provide energy 
required for cellular metabolism after glycogen has been depleted and in the 
absence of glucose from the blood. Therefore, glycolysis is elevated, and lipid 
catabolism is strongly and characteristically upregulated in HCC and other can-
cers as a means of cell survival. In rapidly proliferating tumor cells, elevated 
lipid catabolism helps to satisfy the high energy demands of the cells via acetyl-
CoA, NADH, and FADH and supplies glycerophospholipids for cell membrane 
formation (42).
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LIPID METABOLIC REPROGRAMMING

Although not fully understood and not as well studied as changes in glucose or 
glutamine metabolism, lipid metabolic reprogramming appears to be an effective 
strategy to sustain cancer stem cells in a hypoxic environment (43, 44). Tumor 
cells harboring beneficial metabolic changes, including those that produce pro-
oncogenic metabolic intermediates, may undergo clonal selection (45). For 
example, the Warburg effect is a well-known adaptive strategy in which tumor 
cells forsake normal oxidative phosphorylation in exchange for less-efficient aer-
obic glycolysis, even in the presence of oxygen (46). Similarly, glutaminolysis 
helps to sustain the Krebs cycle via increased production of citrate and 
α-ketoglutarate through elevated glutamine metabolism (47). Changes in fatty 
acid metabolism through metabolic reprogramming have also been found to play 
an important role in facilitating carcinogenesis (48). Generally, cells import fatty 
acids and other lipids from the blood, but HCC tumors upregulate genes involved 
in fatty acid biosynthesis, including SREBP-1-regulated genes such as ATP citrate 
lyase (ACLY), acetyl-CoA carboxylase (ACC), FAS, SCD-1, and GPAT, in order to 
generate fatty acids de novo (48, 49). A number of key enzymes, including ACLY, 
ACC, and fatty acid synthase (FASN), catalyze biosynthesis of fatty acids from 
citrate and acetyl-CoA. ACC catalyzes a key initial step in fatty acid biosynthesis, 
the conversion of acetyl-CoA to malonyl-CoA (50), and helps to sustain HCC 
tumors experiencing metabolic stress (51). As a rate-limiting enzyme in lipogen-
esis, elevated expression of ACCα has been reported to be an independent pre-
dictor associated with poor HCC prognosis (51). Similarly, FASN is a 
multifunctional enzyme that catalyzes the synthesis of long-chain saturated fatty 
acids during one of the final stages of fatty acid biosynthesis. FASN is over 
expressed in HCC as well as in many other types of cancer (52), and genetic abla-
tion and drug targeting studies of FASN have revealed suppressed development 
of HCC (41, 53, 54). Interestingly, aspirin has been shown to suppress abnormal 
lipid metabolism in hepatoma cells via NF-κB targeting by downregulating the 
expression of acyl-CoA synthetase long-chain family member 1 (ACSL1), which 
converts free fatty acids into fatty acyl-CoA esters, an early step in fatty acid deg-
radation and important for lipid biosynthesis (55).

To exploit fatty acids as an efficient source of stored energy, β-oxidation has 
also been shown to be upregulated in HCC and other cancers (49, 56, 57). In 
particular, 2-oxoglutarate is upregulated in HCC, and the levels of pyruvate and 
lactic acid are elevated, whereas carnitine esters, citrate, glycerol-3- phosphate, 
and free fatty acid levels are reduced (36, 58–61). This lipid-rich state is also 
associated with obesity, as obese patients not only take in more dietary fatty 
acids than non-obese patients but also hydrolyze more stored fats from adi-
pose tissue. As a result, the liver is exposed to very high fatty acid  levels. 
The liver adjusts to this stress through adaptive metabolic changes ( metabolic 
reprogramming), such as a shift to aerobic glycolysis and increased glutamine 
synthesis to provide α-ketoglutarate and citrate for the citric acid cycle, which 
collectively increase the risk of HCC (44). Obesity-mediated insulin resistance 
also promotes hyperinsulinemia, and oxidative and endoplasmic reticulum 
stress and changes in gut microbiota promote release of pro- inflammatory 
cytokines (62–68). The association between obesity and HCC suggests that 
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use of statins to treat obesity by inhibiting hepatic cholesterol biosynthesis 
and metformin to treat insulin resistance might offer some protection against 
HCC (odds ratios 0.74 and 0.38, respectively) (69, 70). FABPs, which regulate 
intracellular transport of fatty acids, are upregulated in a  number of differ-
ent cancers, including cancers of the bladder, breast, liver, lung, and prostate, 
and serve as biomarkers for cancer risk and  aggressiveness (71). In a study of 
lipid-related HCC in a mouse model, Chiyonobu et al. showed that FABP4 was 
strongly upregulated in activated hepatic stellate cells (HSCs) resident within 
murine HCC tumors as well as in human metabolic-related HCC tumors but 
not in viral or alcohol-related HCCs, suggesting a mechanistic role of HSCs in 
NASH-related HCC (72).

LIPIDOMICS

Although a number of studies have examined changes in gene expression during 
HCC (73), fully understanding diseases as complex as NASH and HCC requires 
deep understanding of the internal state of individual cells. Single-cell transcrip-
tomics is now possible; however, HCC tumor heterogeneity remains a challenge. 
A snapshot of the internal state can be partially reconstructed by assembling 
multiple complementary types of omics data. Lipidomics, first introduced in 
2003, is the branch of metabolomics charged with characterizing the diversity of 
fatty acids and other lipid products within a cell, tissue, organ, or biofluid. 
Another goal of lipidomics is to uncover the enzymatic mechanisms and turnover 
kinetics responsible for changes in lipid metabolism (74). The lipidome is com-
plex, diverse, and dynamic, representing tens to hundreds of thousands of 
molecular species in a constant state of flux (74). The following is an overview of 
how lipidomics can help elucidate the molecular mechanisms that contribute to 
HCC. The common lipidomics methods and selected lipidomics studies perti-
nent to HCC are summarized in Tables 1 and 2, respectively.

Several metabolomics and lipidomics studies involving HCC or NASH have 
been performed (Table 2). Puri et al. reported elevated levels of saturated and 
monounsaturated fatty acids (especially palmitoleic acid and oleic acid) and 
reduced levels of polyunsaturated fatty acids (e.g., linoleic acid) in patients with 
NAFLD or NASH compared to healthy controls (90). Patterson et al. compared 
plasma samples from HCC patients, healthy controls, and patients with cirrhosis 
or acute myeloid leukemia using ultra-performance liquid chromatography elec-
trospray ionization-quadrupole mass spectrometry (UPLC-ESI-QTOFMS) and 
ultra-performance liquid chromatography-electrospray ionization-triple quad-
rupole mass spectrometry (UPLC-ESI-TQMS) (91). They reported that glycode-
oxycholate, deoxycholate 3-sulfate, bilirubin, biliverdin, and several fetal bile 
acids were elevated in the plasma of patients with HCC, whereas lysophospho-
choline levels were reduced. Notably, they found that two very long chain fatty 
acids (VLCFAs), lignoceric acid and nervonic acid, were largely undetectable in 
plasma from HCC patients compared to patients with cirrhosis. Due to their 
extended length (≥22 carbons), VLCFAs are synthesized through a multistep 
elongase-dependent pathway in the endoplasmic reticulum and must be metab-
olized in peroxisomes (92).
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TABLE 1 Common lipidomics methods and selected 
lipidomics studies involving HCC

Method Description
HCC lipidomics 
studies

GC Gas chromatography (75)
(76)

UPLC-MS Ultra-high performance liquid chromatography mass 
spectrometry

(77)

MALDI-MS Matrix-assisted laser desorption/ionization mass spectrometry (78)

ESI–MS Electrospray ionization tandem mass spectrometry (79)

IMS Imaging mass spectrometry (80)

LC-MS Liquid chromatography mass spectrometry (60, 81–83)

Shotgun lipidomics Electrospray ionization mass spectrometry (82)

RPLC-MS Reversed-phase liquid chromatography mass spectrometry (84)

LC/IT-TOF MS Liquid chromatography/ion trap time-of-flight mass 
spectrometry

(85)

HPLC-MS High-performance liquid chromatography mass spectrometry (76, 86)

DESI-MSI Desorption electrospray ionization mass spectrometry imaging (87)

LC-ESI–MS Liquid chromatography electrospray ionization mass 
spectrometry

(88)

UPLC-ESI-QTOF 
MS

Ultra-high performance liquid chromatography-electronic 
spray ionization-QTOF mass spectrometry

(89)

MALDI-FTICR MS Matrix-assisted laser desorption ionization-Fourier transform 
ion cyclotron resonance mass spectrometry

(89)

GC-MS Gas chromatography mass spectrometry (83)

Lignoceric and nervonic acid, in particular, are involved in the maintenance 
of myelin, but VLCFAs are known to perform a range of functions, including skin 
barrier formation, sperm maturation, retinal functions, and liver homeostasis 
(92). VLCFAs also serve as precursors of inflammation-resolving lipid mediators, 
with potential roles in HCC formation (92). In a large case-control study compar-
ing matched blood samples from patients before and after HCC diagnosis relative 
to healthy controls, Fages et al. identified a set of 16 metabolites involved in lipid 
and amino acid metabolism and ammonium detoxification that served as predic-
tive biomarkers that differed between pre-diagnostic HCC patients and healthy 
controls, reflecting a characteristically altered metabolic state prior to HCC 
 development (93). Two studies in China also reported panels of serum amino 
acid and fatty acid biomarkers able to predict HCC with area under the curve 
(AUC) greater than 0.96 (61, 94). Lin et al. recently showed that a decrease in 
palmitic acyl-based glycerophospholipids, a key component of the cell mem-
brane, was associated with metastatic HCC (86).
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TABLE 2 Selected lipidomics studies

Study Description

Muir et al. (75) The authors reported an increased ratio of long chain n6-polyunsaturated 
fatty acids to n3-polyunsaturated fatty acids in NASH and HCC using a 
Pten-null mouse model.

Weylandt et al. (76) Using a fat-1 transgenic mouse model, the authors showed that increased 
omega-3 polyunsaturated fatty acids suppress HCC tumorigenesis by 
reducing inflammation.

Passos-Castilho et al. (77) Serum ultra-high performance liquid chromatography mass spectrometry 
(UPLC-MS) lipid profiles discriminated patients with HBV-related HCC 
from patients with chronic HBV.

Passos-Castilho et al. (78) Matrix-assisted laser desorption/ionization mass spectrometry lipid profiles 
discriminated patients with HCV-related HCC from patients with chronic 
HCV.

Krautbauer et al. (79) Ceramide levels were found to be notably reduced in HCC tissues.

Morita et al. (80) Levels of phosphatidylcholine containing palmitoleic acid or oleic acid were 
found to be elevated in HCC using imaging mass spectrometry.

Lu et al. (81) Lipid signatures varied between HCC and serum samples. Plasmalogens 
(36:4) and (40:6) are potential serum biomarkers for HCC.

Zhou et al. (60) Using liquid chromatography-mass spectrometry of serum samples, higher 
levels of long-chain acylcarnitines and lower levels of free carnitine and 
medium and short-chain acylcarnitines were detected in HCC.

Lu et al. (83) Mass spectroscopic analysis of matched tissue and serum samples from 
patients with HCC was used to evaluate the usefulness of acetylcarnitine as 
a biomarker.

Chen et al. (85) Ultra-fast LC/IT-TOF MS serum lipidomics was used to compare lipid profiles 
for patients with HBV, cirrhosis, and HCC. 75 out of 96 lipids were 
downregulated in patients with HCC compared to healthy patients.

Lin et al. (86) Lipid profiling of HCC cells revealed anomalies affecting 93 different lipids. 
Reduced palmitic acyl glycerophosholipids were associated with greater 
metastatic activity.

Li et al. (89) The number of polyunsaturated triacylglycerols with >2 double bonds was 
found to be reduced based on lipid profiling using UPLC-ESI-QTOF MS 
and MALDI-FTICR MS.

THERAPEUTIC ADVANCES TARGETING LIPID METABOLISM

Despite a better understanding of lipid metabolism, drugs targeting key steps in 
lipogenesis in various types of cancer are still in the experimental stage (Table 3) 
(95, 96). Given the central regulatory role of SREBPs in lipid metabolism, SREBPs 
represent promising drug targets. SREBP-1 and SREBP-2 are upregulated in glio-
blastoma and prostate cancer, respectively, and SREBP ablation or blocking has 
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TABLE 3 Drugs targeting lipid metabolism in tumor cells

Year Compound Target Tumor Type Model Ref.

2019 Simvastatin Lipid rafts Human lung cancer A549 cell (101)

2018 Paclitaxel and 
vinblastine

Microtubule 
dynamics

Human osteosarcoma U2OS cell (102)

2017 Betulin SREBPs Human liver cancer Diethylnitrosamine-
injected mice 
model

(83)

2017 Cetuximab Acetyl-CoA 
carboxylase 
(ACC)

Head and neck 
squamous cell 
carcinoma 
(HNSCC) 

HN5, FaDu, 
Tu159, OSC19, 
MDA1986, 
UMSCC1, and 
Tu167)

(103)

2016 Nutlin-3 and 
actinomycin D

Ceramide synthase 6 
(CerS6)

Human lung cancer A549 cell (104)

2015 TVB-2640 Fatty acid synthase 
(FASN) 

- Phase I (105)

2014 Azoxymethane/
dextran sodium 
sulfate

Sphingosine-1-
phosphate (S1P) 
lyase (SPL)

Colitis-associated 
cancer (CAC)

CAC murine model (106)

2012 C75 FASN Prostate cancer (PC) LNCaP cell (107)

2010 PX-866 PI3K Human glioblastoma U251, U87, 
LN229, and 
LN18 cells

(108)

2010 NDNSAs Unknown Human breast cancer MCF-7 cell (109)

2009 LCL385 Acid ceramidase 
(AC)

PC PPC-1 cell (110)

2009 15-dPGJ2 PPARγ Colorectal cancer  CT-26 s.c. tumor 
model and an 
HL-60 xenograft 
model

(111)

been shown to induce cancer cell death and suppression of tumor growth (95). 
However, development of drugs that directly target transcription factors is diffi-
cult, and efforts have instead focused on drugs such as betulin, fatostatin, xantho-
humol, and PF-429242 that inhibit the translocation of SREBP to the Golgi 
apparatus (95). Li et al. examined whether inhibition of de novo lipid biosynthesis 
is protective against HCC by blocking SREBP cleavage-activating protein in hepa-
tocytes using betulin in a diethylnitrosamine-induced HCC mouse model (97). 
They found that blocking or ablation of this key component of the SREBP path-
way suppressed HCC. Drugs have also been developed targeting specific steps in 
lipid metabolism. The ACC inhibitor GS-0976 has been found to reduce the 
extent of liver steatosis and fibrosis in NASH patients (98, 99), and drug targeting 
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of FASN has been shown to suppress HCC development (41, 53, 54). Several 
existing drugs such as statins and metformin are thought to have a protective 
effect against HCC (69, 70). Statins, as lipid-lowering agents, have long been used 
for the treatment of heart disease. They have also been reported to have a protec-
tive effect against tumorigenesis. Some published evidence supports the use of 
statins in HCC prevention in patients with liver disease (100).

CONCLUSION

While much progress has been made in limiting viral and environmental causes of 
HCC, new cases of NASH-related HCC are currently increasing and are likely to 
continue to increase for the foreseeable future. Many cases of NASH-related HCC 
are preventable through changes in lifestyle, including exercise and reduced 
intake of fructose and high-fat foods, but such changes are difficult to maintain. 
Therefore, there is an important unmet need to develop biomarkers to monitor 
changes in hepatic lipid metabolism in NAFLD patients, so that it is possible to 
intervene as early as possible in patients with the highest risk of progressing to 
NASH and cirrhosis. Early detection of HCC offers the best chance of treatment, 
while few procedures significantly improve survival in the case of advanced HCC. 
It is essential to determine the key molecular events that trigger hepatocarcino-
genesis in order to facilitate drug development to prevent or slow development of 
HCC. Lipidomics provides a valuable tool to assess the detailed metabolic changes 
that may lead to initiation of liver cancer.
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