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Abstract: There is growing evidence that supports the role of the tumor microenvi-
ronment in the development and progression of hepatocellular carcinoma. The 
tumor microenvironment is composed of cellular components, bioactive substances, 
and extracellular matrix comprising of proteins such as collagens, proteoglycans, 
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and the linear glycosaminoglycan hyaluronan. Hepatocellular carcinoma generally 
arises from fibrotic or cirrhotic liver, characterized by alteration in extracellular 
matrix components. In addition, non-tumoral cells such as mesenchymal stem/ 
stromal cells (MSCs) are typically recruited to the injured or hypoxic area within the 
tumor. Besides the secretion of immunoregulatory proteins, growth factors, and 
cytokines, MSCs and hepatic stellate cells can also synthesize hyaluronan, amongst 
other components, which affects several tumor-associated processes. The tumor 
microenvironment also contains different types of immune cells. A key component 
in the genesis of hepatocellular carcinoma is the macrophages, as tumor-associated 
macrophages (TAM). This chapter provides an overview of the interaction of MSCs-
hyaluronan-TAMs and tumor cells, and how this interaction potentially contributes 
to the development and progression of hepatocellular carcinoma.

Keywords: hepatocellular carcinoma; hyaluronic acid; macrophages; mesenchy-
mal stem cells; tumor microenvironment

INTRODUCTION

The biology of a tumor can only be understood by studying different cell types 
within the tumor microenvironment (TME) (1). The interaction between tumor 
cells and the associated stroma plays a crucial role in the initiation and progres-
sion of a tumor (2). The heterogeneity of tumors is based not only on the genomic 
profile but also on their microenvironment composition (2). The microenviron-
ment actively regulates tumor initiation, its progression, metastasis, and therapy 
response (3). The extracellular matrix (ECM), as part of the TME, is essential for 
asymmetric cell division and maintenance of tissue polarity; it may block or facili-
tate cell migration, determine the direction of cell–cell communication, and bind 
to growth factors to prevent their free diffusion (4). Changes in ECM support the 
development of hepatocellular carcinoma (HCC), and the complexity of TME and 
therapeutic failures may be explained, in part, by alterations of components of the 
ECM. The development of HCC is associated with prolonged inflammation caused 
by chronic virus infection, alcoholic exposure, or metabolic diseases. The inflam-
matory microenvironment facilitates the transformation of normal liver cells such 
as hepatocytes, stem, immune, and stellate cells by providing a suitable environ-
ment for the development and progression of a tumor (5, 6). HCC is a primary 
liver tumor that derives, in most cases, from hepatocytes and corresponds to 
approximately 90% of all liver cancers (7, 8). Since cholangiocarcinoma, hepato-
blastoma, and angiosarcoma are less common than HCC, they are not discussed 
in this chapter.

THE TUMOR MICROENVIRONMENT

The TME is composed of non-cellular and cellular components (4). The ECM is 
the non-cellular component. The cellular component, apart from tumor cells, 
consists of a variety of cells including tumor-associated fibroblasts (TAFs), 
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angiogenic endothelial cells, bone marrow-derived cells, adipocytes, and cells of 
the immune system (Figure 1) (9). In HCC, hepatic stellate cells (HSCs) are also 
part of this cellular microenvironment (10). The bidirectional interaction between 
the tumor and its microenvironment greatly affects tumor initiation, progression, 
and drug resistance, and a better understanding of this interaction may enable the 
identification of novel targets for tumor therapy (11, 12).

Non-cellular compartment

During embryonic development and organ homeostasis, the composition of ECM 
is tightly regulated. However, in diseases such as cancer, it is usually deregulated 

Figure 1 Schematic representation of the role of a HA-rich microenvironment in cancer 
progression. The TME is composed of non-tumor cells, such as fibroblasts, endothelial cells, 
MSCs, adipocytes, and infiltrating immune cells, and of non-cellular compartments, including 
secreted soluble factors and solid-state structural ECM. HA is an abundant component of the 
ECM that recruits and activates stromal cells to stimulate cell proliferation, migration, 
differentiation, angiogenesis, immune effects, and therapy resistance. HA induces intracellular 
signals through several receptors, mainly CD44, whose expression is associated with the 
characteristics of CSCs. Accumulation of HA in the tumor stroma drives the differentiation and 
activation of CAFs. CSCs are described as tumor initiators and are associated with tumor 
proliferation, drug resistance, and metastasis, whereas some cells such as MSCs can be 
integrated into the TME after recruitment and interact with tumor cells to promote tissue 
homeostasis and repair processes. The TME contains several types of immune cells including 
macrophages, neutrophils, dendritic cells, granulocytes, and lymphocytes. TAMs usually have a 
pro-tumoral action since they can promote tumor neovascularization and have an 
immunosuppressive action. CAF, cancer-associated fibroblasts; CSC, cancer stem cells; ECM, 
extracellular matrix; HA, hyaluronan; MSC, mesenchymal stem/stromal cells; TAM, tumor-
associated macrophages; TME, tumor microenvironment.
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and disorganized. Abnormal ECM alters the behavior of stromal cells and, as a 
consequence, supports and leads the generation of the TME (4). One of the com-
ponents of ECM that is altered in tumors is the glycosaminoglycan hyaluronic 
acid (HA). HA is a linear molecule composed of disaccharide units of N-acetyl 
glucosamine and glucuronic acid; it is synthesized by hyaluronan synthases and 
degraded by hyaluronidases and glycosylphosphatidylinositol (GPI)-anchored 
hyaluronidase PH-20 (13, 14). Activities of these enzymes are shown to greatly 
influence tumor growth and metastasis (15). HA is overexpressed in both cir-
rhotic and liver tumor tissues, promoting tumor progression (16, 17). Several 
pieces of evidence indicate that HA inhibition by 4-methylumbelliferone (4-MU), 
a specific HA synthesis inhibitor, delays HCC growth (18, 19). Besides, the use of 
recombinant hyaluronidase as an adjuvant therapy in different types of cancer 
shows the complex relationship between hyaluronan synthases and hyaluroni-
dases in maintaining HA expression (20). HA is an abundant component of the 
ECM that mediates cell proliferation, migration, and differentiation during inflam-
mation and tumor development. Most malignant tumor tissues contain elevated 
levels of HA compared to their normal counterparts (21). Remarkably, HA levels 
rise in the serum of patients with liver injury, and it is proposed as a biomarker for 
high-score fibrosis and cirrhosis (16). HA is a ubiquitous molecule with high con-
centrations found in the synovial fluid, vitreous humor, skin, and umbilical cord. 
At homeostasis, HA is mostly present in a high molecular weight form, ranging 
from 0.5x106 to 107 Da, and to a lesser extent in a low molecular weight form, 
ranging from 104 to 0.5x106 Da. The low molecular weight form is mostly present 
in pathological conditions such as inflammation and cancer (22, 23). HA acts by 
inducing intracellular signals through several receptors: toll-like receptor 4, lym-
phatic vessel endothelial hyaluronan receptor 1, and receptor for hyaluronan-
mediated motility (24, 25). The main receptor, CD44, is also considered a marker 
of cancer stem cells (CSC). It is encoded by the CD44 gene, which is a large and 
highly conserved gene (20 exons, out of which 10 can undergo alternative 
 splicing). It has been demonstrated that the interaction between HA and CD44 
promotes tumor progression in different solid tumors, including HCC (14, 26).

Proteoglycans (PGs) are composed of at least one linear negatively charged 
polysaccharide chain, such as heparan sulfate, chondroitin sulfate, keratan/ 
dermatan sulfate or heparin, that is covalently attached to a core protein (27). In 
healthy tissues, PGs are essential for structural scaffolding in the ECM, interac-
tions with cytokines and growth factors and their receptors, and inducing cell 
signaling (28). During carcinogenesis, the expression of PG is markedly altered to 
promote cancer cell growth, survival, adhesion, migration, and angiogenesis (28).

Cellular components

Several types of cells belonging to the TME have been described as key regulators 
of different aspects of the tumor process. CSCs are described as tumor initiators 
and are associated with tumor growth, drug resistance, and metastasis (29). HSCs 
are key cells in responding to the inflammatory state in the liver and are the prin-
cipal cells that promote ECM remodeling (30), whereas MSCs can be attracted 
into the TME and, after recruitment, can interact with tumor cells to promote 
tumor modifications (12, 31). CSCs have a constant interaction with their specific 
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microenvironments called niches. CSC niches are formed by different cellular 
components and regulated by secreted factors such as cytokines and growth fac-
tors (12). CSCs exhibit the capacity for self-renewal, pluripotency, tumorigenicity, 
and resistance to therapy. Many cancer therapies eliminate most of the tumor cells 
but ultimately fail because they do not eliminate CSCs fully, which survive to 
regenerate new tumors. CSCs possess several intrinsic mechanisms of resistance 
to current chemotherapeutic drugs (1, 32, 33). They have a high-level expression 
of ATP-binding cassette (ABC) transporters, which are correlated with multidrug 
resistance. ABC transporters reduce the cellular accumulation of various types of 
therapeutic agents, and therefore, CSCs become more resistant to even higher 
doses of anti-tumor agents (34).

MSCs represent a heterogeneous population of multipotent progenitors first 
described in bone marrow but present in almost all vascularized organs. Due to 
their high plasticity, they show various functions according to the requirements of 
that particular tissue. These include, among others, homing to sites of tissue 
 damage, the initiation of repair processes, and the regulation of tissue  homeostasis. 
Tumor growth usually induces tissue remodeling, creating an inflammatory envi-
ronment. Consequently, MSCs can be recruited to these tumor sites and activated 
to have repair and immunomodulation functions. Several factors such as interleu-
kin (IL)-8, monocyte chemoattractant protein-1, growth-regulated oncogene, and 
autocrine motility factor, produced by the HCC, are known to attract and recruit 
MSCs (35, 36). It is known that MSCs can secrete several growth factors, cyto-
kines, chemokines, and ECM components (37). Once within the tumor, direct 
and indirect interactions between MSCs, the ECM and cancer cells increase plas-
ticity within the tumor tissue and its microenvironment.

The TME also contains several types of immune cells such as macrophages, 
neutrophils, dendritic cells, T cells, regulatory T cells (Tregs), natural killer (NK) 
cells, and eosinophils (37). Studies have shown that changes in the number and 
function of these immune cells contribute to the development, tolerance, and 
progression of HCC (38–43). Macrophages are the major component of the 
immune infiltrate that is present in tumors (44, 45). Several studies indicate that 
tumor-associated macrophages (TAMs) usually have a pro-tumoral action, since 
they can stimulate angiogenesis, increase tumor cell invasion and motility, and 
have an immunosuppressive action (44, 45). In the case of HCC, TAMs, as infil-
trated monocytes and resident Kupffer cells, are characterized as the most impor-
tant immune cell type that promotes tumor invasion and metastasis (37).

THE TUMOR MICROENVIRONMENT IN HCC DEVELOPMENT

Hepatocarcinogenesis is a multifactorial process. Most HCC cases are associated 
with alcohol abuse, nonalcoholic steatohepatitis (NASH), and chronic infection 
with hepatitis B virus (HBV) or hepatitis C virus (HCV) inducing an inflammatory 
process followed by regeneration. Persistent hepatic injury and concurrent regen-
eration could produce an environment that eventually leads to the formation of 
hypoxia and inflammation, which are crucial features of HCC microenvironment 
(5, 6, 46). HCC has a heterogeneous population of CSC, which are considered to 
be tumor-initiating cells. It has been reported that 28–50% of HCC cells express 
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progenitor cell markers (47). Many potential origins of hepatic CSCs have been 
described. They may result from genetic and epigenetic modifications of hepato-
cytes, hepatic oval cells/liver progenitor cells (LPCs), or circulating bone marrow 
cells. These transformed cells, in combination with deregulated microenviron-
ment, result in a distinct lineage of CSCs that have stem-like features (Figure 2). 
Some cell surface markers for CSCs include CD44, CD133, CD90, CD105, CD45, 
CD13, and epithelial cell adhesion molecule (EpCAM) (5). CSCs have a very 
 complex signaling network that includes crosstalk with different non-tumoral 
cells. During tumor development, multiple immunosuppressive molecules are 
released from cancer cells, which subsequently contribute to the establishment of 
an immunosuppressive TME (5, 48). LPCs are small cells (7–10 µm in diameter) 
with basophilic character. They have small ovoid nucleus and a high nuclear-
cytoplasmic ratio. LPCs are heterogeneous, hardly detectable in healthy liver, but 

Figure 2 Stem and immune cells associated with tumor development. HCC is composed of a 
heterogeneous population of CSCs, which might derive from hepatocytes, progenitor cells 
(oval cells), or other adult stem cells, like bone marrow cells. CSCs have a very complex 
signaling network that includes crosstalk with different non-tumor cells, such as immune 
cells. The tumor microenvironment contains several types of non-tumor cells: macrophages, 
Kupffer cells, stellate cells, dendritic cells, T cells, Tregs, and NK cells. Changes in the number 
and function of these cells contribute to the development of immune tolerance and 
progression of HCC. Tumor-associated macrophages are characterized as the most important 
immune cell type that promotes tumor invasion and metastasis. Similar to cancer cells, 
macrophages such as Kupffer cells secrete several types of cytokines and factors crucial for 
HCC progression, metastasis, and drug resistance. CSC, cancer stem cells; EGF, epidermal 
growth factor; HCC, hepatocellular carcinoma; IL-6, interleukin 6; IL-8, interleukin 8; MMPs, 
matrix metalloproteinases; MSC, mesenchymal stem/stromal cells; NK, natural killer; TGF-β, 
transforming growth factor-β; TNF-α, tumor necrosis factor-α; Tregs, regulatory T cells; VEGF, 
vascular endothelial growth factor.
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are activated in chronic liver injury. The origin of these cells is still debatable. The 
inhibition of LPCs correlates with reduced tumor development, and their activa-
tion and proliferation are linked to HCC development. In addition, they have 
been implicated in hepatocyte regeneration (49, 50).

The role of MSCs in tumor initiation is still controversial, particularly in HCC. 
In vitro evidence indicates that during MSC differentiation into hepatocytes, 
 aberrant activation of Wnt/β-catenin is associated with a tumoral phenotype, 
involving increased proliferation, elevated proliferating cell nuclear antigen 
expression, cell cycle alteration, and spheroids formation (51). Another report 
suggests that MSCs may initiate HCC. The HCC cell line SK Hep-1 has been 
shown to display MSCs-like features and the capacity to differentiate into osteo-
genic and adipogenic lineages (52). Although these in vitro data indicate the 
potential role of MSCs in hepatocarcinogenesis, in vivo evidence to clarify this 
potential process is lacking.

Chronic inflammation is a risk factor for the development of tumors (53). 
HCC frequently arises in chronically inflamed liver. Sustained inflammation is 
characterized by a continuous activation of immune cells that release free radicals 
that can damage the DNA and cause a neoplastic transformation. The TAMs 
derived from Kupffer cells or circulating monocytes are recruited into the tumor 
tissues by chemokines and other factors secreted by tumor cells and the inflam-
matory cells present in the TME (37). TAM-derived cytokines and growth factors 
play a key role in the initiation of HCC. One of the most important TAM-derived 
cytokines is IL-6, which triggers pathways that promote proliferation and survival 
of hepatocytes, stimulating the initiation and development of HCC. It has been 
reported that IL-6−/− mice had lower incidence of HCC tumors and longer survival 
than wild-type mice (54).

The changes in ECM and its components allow the tumoral transformation of 
hepatocytes. It has been observed that patients with liver fibrosis and advanced 
cirrhosis present high levels of HA in serum (16). In an experimental model that 
mimics liver injury or fibrosis (18), HA was detected in injured/fibrotic liver but 
not in normal tissues. HA is synthesized by the synovial lining cells, HSCs, and 
MSCs during wound healing of the liver (16). HA is also associated with the stem 
cell niche. The ECM of this microenvironment is composed of HA among other 
components such as laminin, collagen, sulfated chondroitin-sulfate, and heparin-
sulfate proteoglycans that maintain stemness (55). Liver injury induces the expres-
sion of HA; during the chronic process, HA elevation is continuous, allowing the 
interaction with the potential cancer stem cell marker CD44, which actively pro-
motes tumor initiation (56). Lee et al. showed that HA-based multilayer films 
mimicked the stem cell niche and selected and enriched for liver CSCs (57). 
Besides, HA could be involved in HCC initiation, given its association with IL-6 
expression. Particularly in cirrhotic liver, IL-6 is highly produced by Kupffer cells, 
and together with other inflammatory mediators, IL-6 has the ability to induce 
HSC trans-differentiation to myofibroblasts (58, 59). Moreover, IL-6 is essential 
for the expansion of mutated hepatocytes (60). It has been reported that IL-6 
binds selectively to HA, suggesting that this retention and concentration near the 
site of secretion favor its paracrine and autocrine activities, contributing to tumor 
development. In addition, the inhibition of HA by 4-MU decreases IL-6 produc-
tion in TME significantly, reducing tumor growth (18, 61). Recently, in a model of 
HBV-transgenic mice, the inhibition of HA by 4-MU was accompanied by a 
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reduction of CSC markers CD44, CD133, CD90, and EpCAM during hepatocar-
cinogenesis (62).

Other key players in cancer pathogenesis are PGs. Tumoral tissues have dif-
ferential PG expression patterns, which are closely associated with their differen-
tiation and biological behavior. Furthermore, during liver carcinogenesis, HSCs 
become activated; they proliferate and synthesize excess ECM proteins in most 
types of chronic liver diseases (63). Decorin is a member of the small leucine-rich 
proteoglycan (SLRP) gene family, containing a single chondroitin sulfate (CS) or 
dermatan sulfate chain, and is expressed by fibroblast and myofibroblasts (64). 
Syndecan molecules (syndecan-1, syndecan-2, syndecan-3, syndecan-4) are a 
major family of cell-surface heparin sulfate (HS) PGs. They mainly bear HS chains, 
although some members can be additionally substituted with CS chains (65, 66). 
In healthy liver, decorin levels are generally low. However, an increased decorin 
expression was observed in the connective tissue septa during fibrogenesis and in 
chronic liver injury (67). In this process, decorin colocalizes with high amounts 
of transforming growth factor beta 1 (TGF-β1), which is a key stimulator of fibro-
genesis (68). In normal human liver, syndecan-1 is expressed in sinusoidal endo-
thelial cells (69). As cirrhosis progresses, syndecan-1 expression is increased, and 
its localization extended to the entire hepatocyte membrane surface and expressed 
on the surface of biliary epithelial cells (70). Elevated syndecan-1 expression 
appears to be more closely associated with liver cirrhosis, rather than malignant 
transformation (65).

THE TUMOR MICROENVIRONMENT IN HCC PROGRESSION 
AND METASTASIS

HCC is known to harbor different populations of cancer cells with stem cell 
properties, which can be identified by different cell surface markers, such as 
EpCAM, CD44, CD90, and CD133. Some studies have shown that EpCAM+ and 
CD90+ cells are two independent subpopulations. EpCAM+ cells have hepatic 
epithelial stem cell features and are associated with a high tumorigenic capacity, 
while CD90+ cells have mesenchymal-vascular endothelial cell features and 
metastatic propensity. On the other hand, it has been shown in HCC cell lines 
that express CD133 participate in cell survival through the regulation of glucose 
uptake and autophagy. These studies suggest that CD133+ CSCs could use 
autophagy to escape the selective pressure of nutrient deficiency and the hypoxic 
environment in HCC (71–73). CSCs originating from LPCs were found to have 
differential expression of a number of microRNAs (miRNAs). These miRNAs 
were mostly implicated in angiogenesis, post-transcriptional protein modifica-
tion, and small molecule metabolism. Differential expression of miRNAs dem-
onstrates crucial roles of LPCs during the progression of HCC (71, 73). Several 
signaling pathways, including Wnt/β-catenin, BMI-1, TGF-β, Notch, and 
Hedgehog, are known to be stem cell regulators and to accelerate tumorigenesis. 
These, as well as some additional factors such as EpCAM, Lin28, or miR-181, 
interact with CSCs and enhance the progression of HCC (6, 71, 72). On the 
other hand, CSCs also benefit from other processes such as angiogenesis. In fact, 
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HCC is one of the most vascularized solid tumors with particular vascular 
anomalies (48, 72).

Once a tumor is established, MSCs can be recruited from a distant place of the 
same organ or peripheral tissues (e.g., bone marrow) into the TME. Studying the 
function of the recruited MSCs on the tumor development has been of great 
interest during the past decade. Studies that co-injected mice with exogenous 
MSCs (isolated from bone marrow, adipose tissue, or umbilical cord from healthy 
donors) and tumor cells produced equivocal results. While some reports indi-
cated that MSCs promoted tumor development, others demonstrated that MSCs 
were able to inhibit tumor growth (74). The discrepancies of results could be 
related to several factors including the tumor type, the heterogeneity in MSC 
(source, donor age, culture conditions), and the timing at which MSCs are intro-
duced into the TME. These discrepancies remain true for HCC as well. The first 
reports indicated that MSCs inhibited HCC growth in vitro and in vivo (75, 76). 
However, other results demonstrated either a pro-tumorigenic effect (77, 78) or 
a null effect of MSCs on HCC growth (35, 36, 79–82). The inhibition of tumor 
growth was associated with Wnt, NF-κB, and PI3-K/Akt signaling pathways 
(75, 83), whereas enhancement of microvessel density was observed in the case 
of tumor progression (77, 78). Not only MSCs but also their secretome affect 
HCC development. Conditioned medium from human fetal MSCs expressed 
insulin growth factor binding proteins that could bind to insulin-like growth fac-
tors (IGFs). This leads to reduced IGF-1R and PI3K/Akt activation and induces 
cell cycle arrest (84). Extracellular vesicles derived from human bone marrow-
derived MSCs have also been demonstrated to inhibit HCC growth in vitro and 
in vivo (85, 86).

The role of MSCs in tumor metastasis has also been studied. Li et al. demon-
strated in a subcutaneous model of HCC that MSC-treated mice exhibited larger 
tumors but a decreased number of lung metastases. This effect seemed to be related 
to TGF-β1 downregulation (87). Moreover, repeated inoculation of MSCs in a 
mouse model of high metastatic HCC resulted in an inhibitory effect on HCC 
growth at 3 weeks after MSC engraftment and downregulation of metastasis-related 
factors (88). It was also described that MSCs exposed to an inflammatory microen-
vironment promoted HCC metastasis through TGF-β-induced epithelial- 
mesenchymal transition (EMT) in tumor cells (89). Efforts have been made to 
isolate and characterize MSCs from HCC tumors. Yan et al. isolated MSCs from 
human HCC tissues and demonstrated that the co-culture of these MSCs with 
HCC cells enhanced tumor formation and increased liver and lung metastasis. 
Tumor-associated MSCs produced several trophic factors including S100A4 that 
upregulated miR-155, leading to HCC proliferation and invasion (90). Similar data 
from Hernanda et al. indicated that conditioned medium from MSCs isolated from 
HCC tissues had trophic effects on the Huh7 hepatoma cell line in vitro and in vivo 
(91). It was also demonstrated that HCC-associated MSCs promoted EMT and 
liver tumorigenesis through the expression of a lncRNA-MUF (MSC-upregulated 
factor) in HCC tissue (92). These data suggest that MSCs can be educated by the 
tumor to favor its own growth. However, due to the heterogeneity of MSCs, and 
therefore the difficulty to investigate the endogenous MSCs, more studies are nec-
essary to establish the precise role of these cells on tumor development.

The persistent inflammatory milieu not only promotes tumor development 
but also accelerates tumor progression, stimulates the formation of new blood 
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vessels, and remodels the ECM. Thus, TAMs are also considered as crucial players 
in tumor progression. In HCC, TAMs stimulate invasion, angiogenesis, and metas-
tasis through the release of several mediators, including IL-6, IL-8, TNFα, TGFβ, 
EGF, VEGF, MMP-2, and MMP-9(93). These factors also promote EMT, which is a 
crucial event for tumor progression and metastasis (18, 22, 23, 37). In addition, 
infiltrating monocytes in HCC express high levels of programmed cell death-
ligand 1 (PD-L1) that binds to PD-1 on CD8+ T cells, suppressing its anti-tumoral 
cytotoxic activity (94).

The interaction of HA with its main receptor, CD44, promotes tumoral signal-
ing involved in cell proliferation, invasion, chemoresistance, EMT, and angiogen-
esis (23). Hepatic HA accumulation may be linked to increased tumor tissue 
stiffness (95), which is associated with HCC development. HA was demonstrated 
to facilitate the aggressive phenotype of HCC cell lines, promoting cell prolifera-
tion, metastatic potential, and aerobic glycolysis switch in MHCC97H and HepG2 
cells, both in vitro and in vivo (96).

PGs can regulate the bioavailability and activity of hormones, growth factors, 
cytokines, and their respective receptors which in turn can affect gene expression, 
tumor phenotype, tumor progression, and recurrence rates in specific tumor types 
(97). During angiogenesis, decorin induces endothelial cell sprouting and acti-
vates intracellular signal transduction pathways. Decorin interacts with several 
angiogenic growth factors, including VEGF, platelet-derived growth factor, fibro-
blast growth factor, IGF, connective tissue growth factor, and hepatocyte growth 
factor (98). In addition, decorin interacts with TGF-β and neutralizes its activity, 
preventing the binding to its receptor, and therefore plays a significant role in 
tumor progression and angiogenesis (67). Decorin can also play a pro-angiogenic 
role by facilitating endothelial cell adhesion and migration on type I collagen (99).

TARGETING THE MICROENVIRONMENT TO INHIBIT 
TUMOR GROWTH

TAM-targeted therapies are usually aimed at: (i) eliminating TAMs, (ii) blocking 
the recruitment of circulating monocytes, and/or (iii) reprograming TAMs to an 
anti-tumor phenotype. For example, it was reported that in mouse models of 
HCC, treatment with the tyrosine kinase inhibitor sorafenib reprogrammed TAMs 
and promoted the stimulatory activity of hepatic NK cells (100). Zoledronic acid 
was demonstrated to have an anti-tumor effect by targeting TAMs through phago-
cytosis by macrophages and induction of apoptosis (101). The therapy combining 
these two drugs, sorafenib and zoledronic acid, is currently being evaluated for 
the treatment of advanced HCC in phase II clinical trials (NCT01259193). 
Another strategy for targeting TAMs is inhibition of glypican-3, a proteoglycan 
that promotes the recruitment of macrophages into the tumor, by specific  antibody 
(102). This strategy is currently in phase I clinical trials for advanced HCC (103). 
In addition, there are two more trials (NCT02723942 and NCT02395250) that 
use a similar strategy. So far, the most critical issue that TAM-targeted therapies 
need to overcome is the need to repolarize macrophages towards an anti-tumor 
behavior without causing any adverse events.
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The abnormal metabolism of HA and its accumulation in the injured liver or 
an established tumor have led to the consideration that inhibition of HA synthesis 
may avoid tumor progression and metastasis. Several reports propose the use of 
4-MU as an inhibitor of HA synthesis or the targeting of its receptor CD44 as 
anticancer treatments. The use of CD44 antisense oligonucleotide increased che-
mosensitivity to doxorubicin significantly and induced apoptosis and necrosis in 
HCC cell lines (104). The treatment of HCC cells with 4-MU significantly reduced 
tumor cell proliferation and induced apoptosis, without affecting normal hepato-
cytes. Systemic treatment with 4-MU resulted in the induction of necrosis and 
reduction in the number of tumor satellites in an orthotopic fibrosis/HCC mouse 
model. Mice treated with 4-MU had reduced levels of fibrosis and decreased the 
number of activated HSCs when compared with controls (18). This antitumor 
property could be associated with an inhibition of angiogenesis and decrease in 
IL-6 production (19). Furthermore, animal survival was increased when CD133low 
HCC cells, generated upon 4-MU treatment, were injected in a metastatic HCC 
model (105).

There is clear evidence that PG composition changes with liver cancer develop-
ment. Thus, it could constitute targets for potential therapeutic agents and diag-
nostic biomarkers. Decorin represents a powerful tumor cell growth and migration 
inhibitor by modulating both tumor stroma deposition and cell signaling pathways 
(106). Soluble decorin acts as a tumor suppressor mainly by downregulating vari-
ous receptor tyrosine kinases (such as EGFR, Met, IGFR, and VEGFR), β-catenin, 
and Myc expression, and upregulating p21WAF1/CIP1 (106, 107).

CONCLUSION

The HCC microenvironment is composed of several tumoral and non-tumoral cell 
types, and ECM components that are in continuous communication and interac-
tion with each other. The cellular components include CSCs, LPCs, MSCs, and 
various populations of immune cells including TAMs. The major ECM compo-
nents that are altered in HCC are GAGs such as hyaluronan, and PGs including 
decorin and syndecan. Their interactions make an important contribution to 
tumor progression by modulating tumor cell properties. The data generated in 
preclinical models and clinical trials targeting the TME, especially these molecules 
and cell types, show highly promising results; however, their clinical utility is yet 
to be ascertained. In addition, adverse events of such therapies need to be cau-
tiously evaluated. A better knowledge of the microenvironment–tumor cell inter-
actions could be useful and beneficial for the development of new therapeutic 
approaches for HCC.
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