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Abstract: Molecular features of hepatocellular carcinoma affect patient prognosis 
and treatment efficiency. This chapter provides an overview of the relevant studies 
conducted to identify the cell of origin of hepatocellular carcinoma with a special 
focus on the controversy of hepatocytes versus hepatic progenitors as the main 
tumor-initiating cell. Furthermore, we introduce the concept of cancer stem cells 
(CSCs) and highlight recent publications covering this topic in relation to liver 
cancer. More precisely, we concentrate on the origin of CSCs, discuss accepted 
markers and the need to define a consistent combination of them that can be uti-
lized to clearly define this heterogeneous cell type, summarize important signal-
ing pathways that govern the stemness, and describe state-of-the-art assays to 
isolate and evaluate CSCs. We focus on their contributions to oncogenesis and 
tumor heterogeneity, as well as their feature to resist chemo- and radiotherapy. 
Finally, the potential of using CSC markers for diagnostic purposes and therapeu-
tic approaches targeting these cells is addressed.
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INTRODUCTION

Liver cancer, with hepatocellular carcinoma (HCC) representing approximately 
90% of all cases, is the third leading cause of cancer-related deaths world-
wide (1, 2). The main risk factors for developing HCC are well known and include 
chronic liver damage caused by inflammation and fibrosis, alcohol abuse, infec-
tion by hepatitis B or hepatitis C virus, metabolic syndrome, and ingestion of the 
fungal metabolite aflatoxin B1(1). Therapeutic approaches include surgical resec-
tion, transarterial chemoembolization (TACE), local radiofrequency ablation 
(RFA), and organ transplantation (3). However, most cases of HCC are diagnosed 
at advanced stages for which efficient therapies are limited (4). Unresectable HCC 
cases are treated with sorafenib, a multikinase inhibitor, with modest survival 
benefits (5). It is commonly known that molecular features of HCC affect patient 
prognosis and treatment efficiency. For example, human HCC harboring vascular 
endothelial growth factor A (VEGFA) gene amplification is more sensitive to 
sorafenib treatment (6) and in vivo RNAi screening has identified Mapk14 as a 
target to overcome therapy resistance (7). Therefore, it is essential to comprehen-
sively elucidate the mechanisms underlying hepatocarcinogenesis. Over the past 
decade, there has been a considerable improvement in the understanding of the 
molecular pathogenesis of HCC (8, 9). The landscape of genetic alterations in 
HCC has been clearly characterized. High-level DNA amplifications were found 
in  chromosome 6p21 (VEGFA) and 11q13 (fibroblast growth factor, FGF19; 
Cyclin D1, CNND1), as well as homozygous deletions in chromosome 9 (cyclin- 
dependent kinase inhibitor 2A, CDKN2A). Mutations in the telomerase reverse 
transcriptase (TERT) promoter are the most frequent, affecting 60% of HCC 
patients. The next most prevalent mutations are found in the tumor suppressor 
gene TP53 and catenin beta 1(CTNNB1) (25−30%), followed by genes with low-
frequency mutation rates (e.g., AXIN1; AT-rich interactive domain-containing 
protein, ARID2, ARID1A; tuberous sclerosis protein, TSC1/TSC2; ribosomal pro-
tein S6 kinase alpha 3, RPS6KA3; Kelch-like ECH-associated protein, KEAP1; 
MLL2). TP53-mutated human HCCs revealed increased Aurora A kinase (AURKA) 
 expression, hypersensitivity to treatment with conformation-changing AURKA 
inhibitors, and a positive correlation between AURKA and the proto-oncogene 
MYC expression (10). These findings help to define some of the core deregulated 
pathways in HCC (8, 11). The role of chronic tissue damage, inflammation, and 
metabolism, as well as signaling pathways controlling the immune response dur-
ing hepatocarcinogenesis, has been extensively studied (12–20).

Yet, there is still a need to gain a much deeper insight into the mechanisms 
responsible for liver cancer initiation; that is, the cellular origin; and progression; 
that is, propagation and maintenance; to facilitate the detection of more reliable 
tumor markers for diagnostic and prognostic applications, and the development 
of new targeted therapy approaches for liver cancer.

In this chapter, we will review relevant studies conducted to identify the cell of 
origin of HCC with a special focus on the controversy of hepatocytes versus 
hepatic progenitors as the main tumor-initiating cell (TIC). Furthermore, we will 
introduce the concept of cancer stem cells (CSCs) and highlight recent publica-
tions covering this topic in relation to liver cancer. More precisely, we will concen-
trate on the origin of CSCs, discuss accepted markers and the need to define a 
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consistent combination of them that can be utilized to clearly define this hetero-
geneous cell type, summarize important signaling pathways that govern the stem-
ness, and describe state-of-the-art assays to isolate and evaluate CSCs. We will 
focus on their contributions to oncogenesis and tumor heterogeneity, as well as on 
their feature to resist chemo- and radiotherapy. Finally, the potential of using CSC 
markers for diagnostic purposes and therapeutic approaches targeting these cells 
will be addressed.

CELL OF ORIGIN OF HCC

HCC is highly heterogeneous in cellular morphology, genetic landscape, and 
response to therapeutic interventions (21, 22). Two major molecular clusters 
(proliferation and non-proliferation) with distinguishing enrichment in prognos-
tic signatures, pathway activation, and tumor phenotype have been identified (8). 
Interestingly, one subtype of the more aggressive proliferation class was  specifically 
enriched in markers of progenitor cells (23, 24). These observations have led to 
several hypotheses about the cell(s) of origin of liver cancer with hepatocytes and 
hepatic progenitor cells (HPCs) as the main cellular elements whose malignant 
transformation could initiate hepatocarcinogenesis. Many studies carried out in 
the last years have attempted to shed light on the controversy of the origin of the 
TIC. In general, mouse primary HPCs, lineage-committed hepatoblasts, and 
 differentiated adult hepatocytes were shown to be targetable by oncogenic trans-
formation and to enable tumorigenesis via activation of diverse cell-specific path-
ways (25) (Figure1). However, the nature of target cells affected susceptibility to 
transformation, tumor histopathology, and global gene expression profiles. 
Tumors of HCC-like pattern predominantly derived from mature adult hepato-
cytes underlined that tumorigenic cells keep at least part of the differentiation 
program typically seen in the original cell, while HPC tumors adopt a more primi-
tive mesenchymal-like state (25). Of importance, distinct genetic changes are 
needed for the oncogenic transformation of different hepatic lineage cells. In addi-
tion, the type of genetic alteration predisposing towards carcinogenesis further 
contributes to the phenotypic and molecular diversity of HCC. In non- transformed 
HPCs as well as hepatocytes, loss of the tumor suppressor p53 resulted in chro-
mosomal imbalances and increased clonogenic capacity, and formation of tumors 
with bilinear differentiation after transplantation into immunocompromized 
mice (26). In the following sections, we will discuss the different evidences sup-
porting HPCs or hepatocytes as the cellular origin of HCC (Table 1).

Hepatic progenitor cells as tumor-initiating cells of HCC

Over the past years, several genetic and chemically induced HCC preclinical 
mouse models have been established (27–30). In fact, some of them suggest a 
progenitor cell origin of liver tumors (Figure 1, Table 1). HPCs isolated from 
mouse embryos were able to generate liver carcinomas resembling human HCC 
after isolation and ex vivo genetic manipulation followed by transplantation into 
the livers of recipient mice (31). Progenitor cells in mouse liver were shown to 
give rise to cancer due to interleukin-6 (IL-6)-driven transformation accompanied 
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by inactivated transforming growth factor beta (TGFβ) signaling (32). In contrast, 
constant TGFβ stimulation in cirrhotic liver was shown to promote the neoplastic 
transformation of HPCs to hepatic TICs that facilitate hepatocarcinogenesis 
through an miR216a/phosphatase and tensin homolog (PTEN)/Akt-dependent 
pathway (33). Both studies support a role of HPCs as the cell of origin of HCC 
but point to a contradictory role for TGFβ during their malignant transformation, 
potentially due to the interaction with other signaling pathways.

Mice with attenuated Hippo signaling activity within the liver expanded pro-
genitor cells and subsequently showed liver tumor formation (34). These findings 
are also relevant to human liver cancer, where the majority of human HCCs show 
elevated levels of nuclear yes-associated protein (YAP), which is indicative of attenu-
ated Hippo signaling in these tumors (35, 36). Similarly, deletion of the tumor 

Figure 1 LCSCs—origin and characterization. Hepatocytes, hepatic progenitor cells (HPC) and 
differentiated liver cancer cells are potential cellular origins of liver cancer stem cells (LCSC) 
via transformation or dedifferentiation. Different markers were shown to be specific for 
LCSCs. Signaling pathways associated with these markers are depicted.
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TABLE 1 The different hypotheses about the cell of origin 
of HCC

Proposed 
cell of origin Model Pathways Reference

HPCs Orthotopic transplantation into C57BL/6 mice cIAP1, YAP (31)

elf+/− mice IL-6, TGFβ (32)

Xenotransplantation into NOD-SCID mice TGFβ, Akt (33)

mst1/2 and sav1 conditional mutant mice Hippo (34)

Xenotransplantation into nu/nu mice Nf2/Merlin (37)

AFP-NICD mice Notch (38)

Ctnnb1 conditional mutant mice Wnt (40)

P240 PR-SET7ΔHepA mice STAT3 (43)

DEN/2-AAF/PH treatment of F-344 rats AP-1/JUN (44)

2-AAF/PH treatment of F-344/N Slc rats retinoid receptors (45)

EpcamCreERT2 transgenic mice
DDC
Xenotransplantation into NOD-SCID mice

Wnt (46)

Hepatocytes Tsc1/Sqstm1Δhep and Sqstm1Δhep/MUP mice p62/NRF2/mTORC1/
c-Myc

(48)

Stat3f/f mice, Il6−/−

AAV injection
db/db mice, Mdr2−/− mice

IL-6/STAT3 (49)

R26Tom Hnf1bCreER transgenic mice
DEN, Mdr2−/− mice

N/A (50)

OpniCreERT2 Rosa26RYFP transgenic mice
Rosa26loxP-mTom-stop-loxP–mGFP,  

Rosa26loxP-stop-loxP–ZsGreen1 Cre reporter mice
AAV injection
DEN, DEN/CCl4, DEN/CDE, DEN/DDC, 

Mdr2−/− mice

N/A (51)

AlfpCre p53fl/fl

hydrodynamic tail-vein injection
YAP, Wnt (52)

Foxl1Cre Rosa26RYFP transgenic mice
Rosa26loxP-stop-loxP-YFP Cre reporter mice
AAV injection
DEN/CCl4, DEN/TCPOBOP

YAP (53)

SOX9IRESCreERT2 Rosa26RYFP,  
serum albumin (SA)CreERT2 Rosa26RYFP

transgenic mice
hURI-tetOFFhepmice

galectin-3, 
α-ketoglutarate

(54)
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suppressor gene neurofibromatosis type 2 (Nf2) in livers of developing or adult 
mice resulted in liver cancer formation that was preceded by a progressive expan-
sion of progenitor cells while differentiated hepatocytes were not affected (37). 

Notch signaling, activated in one-third of human HCCs, was shown to pro-
mote liver carcinogenesis in a genetically engineered mouse model (38). All 
Notch-induced tumors showed various degrees of nuclear staining for the Notch 
target gene SOX9, a marker of HPCs (39); and SOX9 overexpression was fre-
quently observed in human HCCs. Therefore, during hepatocarcinogenesis, 
Notch may either control the expansion of a pre-existing progenitor-like cell 
population or drive progenitor-like properties to differentiated cells (Figure 1).

Furthermore, somatic β-catenin stabilization in a unique population of pro-
genitor cells in fetal liver resulted in the frequent development of HCCs with 
spontaneous lung metastases (40). Interestingly, this is in striking contrast to the 
absence of tumors when β-catenin is stabilized in adult hepatocytes indicating 
that activation of the Wnt pathway alone is insufficient for HCC initiation. Indeed, 
additional introduction of genetic alterations such as oncogenic Ha-rat sarcoma 
(Ras) or Akt mutation does result in cancer formation (41, 42).

Mice with proliferation-deficient hepatocytes spontaneously developed hepatic 
tumors composed of cells with CSC characteristics, including the capacity for 
self-renewal, differentiation, and tumorigenesis, due to prolonged necrotic 
regenerative cycles combined with oncogenic signal transducer and activator of 
transcription (STAT) 3 activation (43). The highly proliferating cancerous cells 
in this model can only be derived from HPCs that are still capable of prolifera-
tion and differentiation.

The investigations of hepatocarcinogenesis in different rat models additionally 
point towards HPCs as a potential cell of origin of HCC. Comprehensive charac-
terization of the neoplastic development, by exploring the expression of the bili-
ary and HPC marker cytokeratin (CK) 19 during the evolution of early preneoplastic 
lesions to fully developed HCC, suggested the potential progenitor derivation of 
the majority of the developed tumors (44). Additionally, global gene expression 
analysis revealed that CK19 may serve as a prognostic marker of early persistent 
hepatic preneoplastic lesions. Moreover, a CK19-associated gene signature dis-
covered through comparative functional genomics robustly stratified HCC 
patients according to clinical outcome, highlighting the strength of this rat model 
to reproduce stem cell/progenitor cell-derived human HCC (44). Subsequently, a 
subpopulation of precancerous cells in another rat liver carcinogenesis model was 
identified, which were enriched in CD133+CD44+ cells that formed part of the 
HPC fraction (45).

Finally, a recent lineage-tracing analysis showed that HPCs activated in chroni-
cally damaged liver and thought to originate from proliferating ductal cells were 
specifically labeled in epithelial cell adhesion molecule (EpCAM) CreERT2 mice 
and gave rise to HCCs through the accumulation of induced genetic alterations, 
supporting the existence of progenitor-derived hepatocarcinogenesis (46).

Hepatocytes as the cellular origin of HCC

More recent studies highlight adult hepatocytes as the other main source of HCCs 
(Figure 1, Table 1). These cells have the potential to directly transform into cancer 
cells following sequential genomic damage and dedifferentiate into precursor cells 
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expressing markers of progenitor cells (47). It was shown that hepatocyte-specific 
p62 expression promotes c-MYC induction, mechanistic target of rapamycin 
(mTORC) 1 activation, and HCC initiation (48). Another investigation demon-
strated that mice overexpressing FGF19 in hepatocytes develop HCC (49). 
Moreover, activation of STAT3 signaling through induced IL-6 production in the 
hepatic microenvironment was shown to be essential for FGF19-induced tumori-
genesis. Both studies demonstrate that genetic targeting of hepatocytes promotes 
development of liver cancer in mice.

In contrast to the lineage-tracing analysis employing EpCAMCreERT2 mice 
described above, studies using various other fate-tracing systems have shown that 
in hepatotoxin-induced as well as in carcinogen-free models, HCC does not origi-
nate from progenitor cells, thereby clearly demonstrating that tumors arose from 
hepatocytes in the liver. Tracking of progenitor cells via their expression of the 
biliary marker hepatocyte nuclear factor (HNF) 1β provided the first clear evi-
dence that tumors in classical genotoxic or genetic mouse HCC models do not 
originate from HPCs (50), at least in these experimental animal models. 
Consecutively, complementary fate-tracing approaches were employed to label 
the progenitor compartment and hepatocytes in murine hepatocarcinogenesis in 
order to not only rule out that HPCs represent the cell of origin of HCC but also 
prove that indeed hepatocytes bear the TICs. Tracking HPCs through osteopontin 
(Opn)-CreERT2 and genetically labeling of hepatocytes via infection with adeno-
associated viral serotype 8 (AAV8)-thyroxine binding globulin (Tbg)-Cre sug-
gested that hepatocytes constitute the main cellular source of HCC in mice and 
that a progenitor signature may not reflect progenitor origin, but dedifferentiation 
of hepatocyte-derived tumor cells (51). Indeed, loss of p53 facilitated YAP-
induced tumorigenesis. Mature hepatocytes dedifferentiated into nestin-positive 
progenitor-like cells, followed by differentiation into HCCs in response to muta-
tions targeting Wnt (52). Utilizing a complementary strategy to label the HPC 
compartment, Forkhead box L1 (Foxl1)+ cells, which express the progenitor 
markers EpCAM, SOX9, and CD133, were shown to not contribute to HCC 
tumorigenesis (53). Here, tumors arose exclusively from hepatocytes. Using 
human data as well as mouse models of HCC, HPCs were shown to be activated 
and expanded by transformed hepatocytes through galectin-3, maintaining HPC 
stemness, and α-ketoglutarate, preserving an HPC undifferentiated state (54). In 
the human unconventional prefoldin RPB5 interactor (hURI)-tetOFFhep mouse 
model, both hepatocytes and HPCs contributed to tumor heterogeneity. However, 
HCC predominantly originated from hepatocytes, whereas benign lesions devel-
oped from HPCs (54). Of note, HPCs are mainly activated and start to proliferate 
in damaged livers where hepatocyte proliferation is compromised (55). Most 
experimental conditions often do not actively suppress the ability of hepatocytes 
to proliferate and may therefore not always reflect the diverse human settings, 
which may well favor HPC proliferation due to local hepatocyte inhibition.

LIVER CANCER STEM CELLS

The observation that tumors exhibit significant cellular heterogeneity with respect 
to their tumorigenic potential led to the CSC concept (56). This concept proposes 
that the growth of tumors is fuelled by limited numbers of dedicated stem cells 
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that are capable of unlimited self-renewal and production of heterogeneous prog-
eny (57). CSCs are considered to be highly tumorigenic, metastatic, chemother-
apy- and radiation-resistant, and responsible for tumor relapse (58). Indeed, the 
participation of liver cancer stem cells (LCSCs) in hepatocarcinogenesis was 
reported. Initial studies were based on the identification of a side population (SP) 
in HCC cell lines and tumors after staining with the DNA-binding dye Hoechst 
33342 that was enriched in cells displaying CSC properties (59, 60). Interestingly, 
when DEN-induced collagenase-resistant aggregates were isolated and character-
ized, cells were detected that can give rise to HCC only after transplantation into 
an appropriate host liver undergoing chronic injury (61). These HCC progenitor 
cells (HcPCs) acquired autocrine IL-6 signaling that stimulated their in vivo 
growth and malignant progression. Ectopic lymphoid structures (ELS), associated 
with chronic nuclear factor “kappa-light-chain-enhancer” of activated B-cells 
(NF-κB) activation, were shown to function as cytokine-rich microniches for these 
tumor progenitor cells (62). 

Subsequent investigations focused on the attempt to identify and use reliable 
membrane marker(s) for LCSCs. In the following sections, we will discuss 
accepted markers and the need to define a consistent combination of them that 
can be utilized to clearly define this heterogeneous cell type, summarize impor-
tant signaling pathways that govern their stemness, and describe state-of-the-art 
assays to isolate and evaluate CSCs.

Markers to identify LCSCs

CD133, also referred to as prominin-1, is a well-established cell surface marker of 
hematopoietic stem cells, neuronal stem cells, and HPCs (63). In HCC, its pres-
ence seems to be of clinical significance, since patients with high CD133 expres-
sion exhibit poor overall survival and higher recurrence rates compared with 
patients with low CD133 expression (64). A meta-analysis of all the data available 
in the literature about the correlation between CD133 expression and various 
clinicopathological parameters revealed that the abundance of CD133 expression 
correlated with enhanced alpha-fetoprotein levels, a poor histological grade and 
survival, but did not show significant relation with hepatitis, cirrhosis, and stage 
of the tumor (65).

Moreover, CD133 was identified as a LCSC marker. Initial studies were based 
on the identification and characterization of CD133+ cells in hepatocarcinoma cell 
lines. In CD133+ cells, when compared to their CD133− counterpart, a greater 
colony-forming capacity in vitro and higher proliferative activity as well as 
enhanced ability to form tumors in vivo, both in orthotopic and subcutaneous 
cancer models, was seen (66–68). CD133+ cells preferentially expressed genes 
associated with stemness, such as Bmi1, SOX2, Oct4, Notch, Nanog, Nestin, and 
membrane transporters ATP-binding cassette (ABC) G2 and ABCB1 (68). 
Subsequent studies focused on the characterization of CD133+ cells in primary 
human hepatocarcinomas. CD133 expression in HCC was associated with an 
advanced tumor stage, a larger tumor size, and a poor prognosis (69). A rare 
CD133 population in HCC specimens, with expression ranging from 1.3 to 13.6% 
of the total tumor cell population, was identified (69). When isolated, these cells 
were able to form tumor spheroids composed of undifferentiated tumor cells and 
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had a larger capacity to grow tumors of identical morphology compared to the 
parental ones in immunodeficient mice (69). Interestingly, overexpression of miR-
130b, an miR targeting p53-induced nuclear protein 1 (TP53/NP1), was detected 
in CD133+ cells. To further characterize these cells on a molecular level, CD133+ 
and CD133− cells were isolated from both tumor cell lines and primary tumor 
samples and characterized by genome-wide expression analysis. Self-renewal, 
tumorigenesis, and angiogenesis were shown to be promoted by CD133+ liver 
TICs through neurotensin-induced activation of the IL-8 and chemokine (C-X-C 
motif) ligand 1 (CXCL1) signaling cascade (70).

CD44, a major adhesion molecule of the extracellular matrix and the receptor 
for hyaluronic acid, is implicated in a wide range of biological processes. CD44 
potentiates AKT activation, thereby ceasing the p53 genomic surveillance 
response. DNA-damaged hepatocytes thus escape p53-induced death and 
 senescence and respond to proliferative signals, promoting the accumulation of 
mutations and subsequently transformation to HCC progenitors (71). In HCC, 
the expression of CD44s (CD44 standard variant) was related to TGFβ-mediated 
regulation of the mesenchymal phenotype, and a negative patient prognosis was 
associated with overexpressed levels of CD44s (72). CD44s was recently shown to 
play an important role in maintaining CSCs and regulating oxidative stress of 
an HCC cell line in a Notch3-dependent manner. In addition, CD44 expression 
in  HCC tissues was significantly correlated with Notch3 expression, further 
strengthening the idea that CD44 regulates CSC properties via Notch3 (73). In an 
effort to investigate interactions between the tumor microenvironment and CSCs, 
IL-6 produced by tumor-associated macrophages (TAMs) was shown to promote 
expansion and tumorigenesis of CD44+ cells. Concomitantly, levels of IL-6 in 
human HCC samples positively correlated with tumor stage and markers of 
CSCs (74).

In a separate study, CD44 was preferentially expressed in the CD133+ popula-
tion, and double-positive cells possessed the abilities of extensive proliferation, 
self-renewal, and differentiation. Furthermore, double-positive cells expressed 
more stem cell-associated markers, such as Bmi1, rendering them highly tumori-
genic and chemoresistant (75). Moreover, CD133+CD44high cells played a key role 
in hematogenous metastasis of liver cancers, with CD133 being responsible for 
tumor growth and CD44 being important for invasion (76). In human patients, 
CD44+ and CD133+ correlated with increased risk of poorly differentiated HCC 
and elevated alpha-fetoprotein levels. CD44 and CD133, alone or in combination 
with microvascular invasion, are independent predictors of poor prognosis in 
patients undergoing transplantation for HCC (77).

Expression levels of CD24, a mucin-like cell surface glycoprotein, are related 
to liver cancer progression and prognosis (78). Additionally, it was recently identi-
fied as a potential marker of LCSCs. CD24+ HCC cells were found to be critical for 
the maintenance, self-renewal, differentiation, and metastasis of tumors through 
STAT3-mediated Nanog upregulation, and to significantly impact patients’ clini-
cal outcome. CD24 expression overlaps with that of CD133 and EpCAM (79). 
CD24 expression on hepatocarcinoma cells was shown to be induced by Twist2 
and to be required for the stimulation of HCC stem cell self-renewal (80). Most 
recently, an investigation of the regulation of CSCs by the tumor microenviron-
ment demonstrated that HGF and IL-6 secreted by cancer-associated fibroblasts 
promoted self-renewal, chemotherapy resistance, metastasis, and tumorigenicity 
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of CD24+ cells. More precisely, regulation of stemness properties was dependent 
on STAT3 signaling (81). The abundance of the stem cell markers CD24 and 
CD133 in tumors of HCC patients correlated with increased inducible nitric oxide 
synthase (iNOS) expression, promoting Notch1 signaling and subsequent devel-
opment of stemness traits, as well as accelerated HCC initiation in the mouse 
xenograft tumor model (82).

EpCAM, a homophilic, Ca2+-independent cell–cell adhesion molecule, is 
expressed on a subset of normal epithelia and overexpressed on malignant cells 
derived from a variety of tumors. This overexpression is even more pronounced 
on TICs (83). HCCs can be subdivided into two different subgroups, with EpCAM+ 

tumors displaying features typically observed at the level of HPCs and EpCAM- 
hepatocarcinomas exhibiting features more typical of mature hepatocytes (24). 
EpCAM expression was induced by Wnt-β-catenin (84). Moreover, zinc finger 
protein X-linked was shown to activate and maintain EpCAM+ liver CSCs by pro-
moting nuclear translocation and transactivation of β-catenin (85). EpCAM+ cells 
isolated from EpCAM+AFP+ HCCs displayed properties of CSCs and were able 
to initiate tumorigenesis when inoculated into immunodeficient mice (86, 87). 
The highest tumor-initiating activity in hepatocarcinoma cell lines was found 
in CD133+EpCAM+ cells, compared to CD133+EpCAM− and CD133−EpCAM+ 
populations (88).

CD90, a glycosylphosphatidylinositol-anchored glycoprotein, also known as 
Thy-1, was revealed to be a reliable marker for CSCs. The number of CD90+ cells 
isolated from different HCC cell lines positively correlated with tumorigenicity and 
metastatic potential. CD45−CD90+ cells, in contrast to CD90− or CD45−CD90− cells, 
isolated from tumor tissues and blood samples of liver cancer patients had the 
capacity to generate tumor nodules in immunodeficient mice (89, 90). Interestingly, 
CD44 was shown to regulate the survival and the tumorigenic activity of CD90+ 
liver cancer cells. CD90+CD44+ cells showed a more aggressive phenotype than the 
CD90+CD44− counterpart (90). In primary HCC, EpCAM and CD90 expressions 
were mutually exclusive. Gene-expression analysis of sorted cells suggested that 
EpCAM+ cells exhibited features of epithelial cells, whereas CD90+ cells resembled 
mesenchymal cells (91). A poorly differentiated morphology and high serum alpha-
fetoprotein was associated with the presence of EpCAM+ cells, whereas a high inci-
dence of distant organ metastasis correlated with CD90 positivity (91). Most 
interestingly, a potential interaction of EpCAM+ and CD90+ CSCs was demonstrated. 
The motility of EpCAM+ cells was enhanced by CD90+ cells when cocultured in 
vitro through the activation of TGFβ signaling (91). CyclinD1 overexpression and 
subsequent Smad signaling increased the development of the CD90+EpCAM+ cell 
population, concomitantly increasing stemness and chemoresistance (92). Studying 
gene expression differences between CD90+ CSCs from tumor tissue and CD90+ 
cells from non-tumorous counterparts confirmed the upregulation of genes in 
CD90+ CSCs associated with the biological processes of liver inflammation, chemo-
resistance, and lipid metabolism (93).

Enrichment of CD13, a membranous glycoprotein, was correlated with early 
recurrences and poor prognosis in patients with HCC (94). It was identified as a 
marker for semi-quiescent CSCs in human liver cancer cell lines and clinical 
samples (95, 96). The association of CD13+ CSCs with a hypoxic marker in clini-
cal HCC samples points to a critical role of these cells in carcinogenesis and 
resistance to therapy in liver cancers (97). In liver cancer cells, increased CD13 
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expression was associated with TGFβ-induced epithelial to mesenchymal transi-
tion (EMT), concurrently preventing further increases of both reactive oxygen 
species levels and the induction of apoptosis, thereby promoting the survival of 
CD13+ cells (98).

OV6, a monoclonal antibody isolated from carcinogen-treated rat liver, was 
shown to serve as a hepatic progenitor marker (99). Interestingly, the expression 
of this molecule defined a subpopulation of less differentiated progenitor-like cells 
in both HCC cell lines and primary HCC tissues (100). These cells exhibited 
endogenously active Wnt/β-catenin signaling, enhanced tumorigenicity in vivo, 
and a substantial resistance to standard chemotherapy (100). CSC-like HPC lines 
overexpressing OV6 as well as CD133, EpCAM, and the pluripotency factor Oct4 
can be established from human non-tumorous, tumor-surrounding tissue (101). 
Moreover, OV6-positive TICs were more invasive and metastatic both in vitro and 
in vivo and expressed high levels of C-X-C chemokine receptor type 4 (CXCR4), 
indicating a role for SDF-1/CXCR4 signaling in sustaining stem cell properties 
(102). Patients with elevated numbers of OV6+ tumor cells were associated with 
aggressive clinicopathologic features and poor prognosis (102).

Marker combinations to clearly define LCSCs

As discussed above, several LCSC markers have been reported and used to isolate 
and characterize LCSCs (Figure 1). However, the reliability of each of these mark-
ers in identifying true LCSCs is still controversial (103) calling for a comprehen-
sive evaluation of the effectiveness of stem cell markers. In an effort to evaluate the 
efficiency of some markers to characterize and isolate LCSCs, a range of the most 
commonly used ones (CD44, CD90, and CD133) were tested in both human 
HCC samples and HCC cell lines. Surprisingly, CSC markers were present in both 
tumors and adjacent non-cancerous liver. However, the number as well as the 
staining intensity of positive cells varied with no consistent expression 
patterns (104). Furthermore, LCSCs isolated from the same cell line via different 
markers or from different cell lines via the same markers exhibited a unique 
genetic program of gene expression reflecting the strong heterogeneity of the ori-
gin of liver cancer and possibly the varied etiology of HCC (104). On the contrary, 
a more recent study demonstrated that increased expression of a combination of 
markers (CD90, CD24, CD13, and CD133) in HCC not only correlated with 
advanced disease stage but also with larger tumor size and worse overall 
survival (105). The markers CD90, CD44, CD133, CD13, and CD24 were  present 
diversely in all HCC samples. In contrast to the previous study, their expression in 
non-tumor liver tissues was almost absent (105). CD90+CD24+CD13+CD133+ 
HCC cells possessed progressively increasing self-renewal and tumor-initiating 
ability in vitro and in vivo (105).

Combining more than one marker has been shown to increase the isolation 
efficiency (75, 103). LCSCs most probably represent a large group of diverse sub-
types, each expressing their own different combination of markers. To develop 
future therapies targeting CSCs, and to predict prognosis and efficacy of these 
therapies, it is therefore crucial to comprehensively study and define these distinct 
groups of CSCs in relation to their expression profiles and clinicopathologic fea-
tures of HCC.
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Signaling pathways governing stemness of LCSCs

Several signaling cascades in LCSCs are important to regulate their capacity of 
unlimited self-renewal and production of heterogeneous progeny, their tumori-
genic and metastatic potentials, as well as their resistance to chemotherapy and 
radiation (Figure 1). The essential pathways are Wnt/β-catenin, Notch, and TGFβ, 
among others (106).

Wnt/β-catenin activation is one of the pathways being aberrantly active in HCC 
(107). Proliferation, rapid generation of tumor spheres, and high invasiveness of 
SP cells isolated from liver cancer samples depended on Wnt/β-catenin signaling 
(108). In this group of liver cancer cells, elevated expression of β-catenin leads to 
an increased expression of Wnt/β-catenin target genes, including AXIN2, DKK1, 
and CCND1 (108). Importantly, activation of Wnt/β-catenin signaling has been 
reported in CD133+(68), EpCAM+(86), and OV6+(100) CSCs. The Wnt pathway 
is activated following nuclear translocation of the β-catenin component, thereby 
inducing the transcription of prominent targets, such as CD44 (109), EpCAM 
(84), and c-Myc (110).

Notch signaling misregulation in liver cancer has been described as both onco-
genic and tumor-suppressive, depending on the cellular context (111). This path-
way was activated in CD90+ cells isolated from HCC cell lines and was associated 
with self-renewal, invasion, migration and expression of stem cell-related genes 
(112). Notch signaling stimulated G1-S transition in the cell cycle phase and 
inhibited apoptosis, thus facilitating CSC features (112). CD90+CD24+CD13+ 

CD133+ HCC cells utilize upregulation of Notch and Wnt/β-catenin to initiate 
tumor growth and self-renewal (105).

Activation of the sonic hedgehog (Shh) pathway occurs in the CD133+ sub-
population of Hepa 1–6 cells that harbor stem cell features (113). In general, 
Hh–Notch interactions were shown to regulate cell-fate decisions in an HPC-like 
cholangiocyte cell line (114).

TGFβ serves as a central regulator of signal transduction during inflammation 
and HCC (115). Recently, TGFβ signaling has also been linked to the malignant 
transformation of LCSCs. The percentage of SP cells, as well as their survival rate 
and chemotherapeutic resistance, was shown to increase following TGFβ treat-
ment of a hepatoma cell line. Gene analysis revealed that epidermal growth factor 
receptor (EGFR) was upregulated and that this was dependent on Smad (116). 
On the contrary, TGFβ treatment resulted in decreased cell survival and con-
comitantly a reduced number of SP cells in HCC cell lines through induction of 
 accumulation of cells at G0/G1 and upregulation of p-c-Jun N-terminal kinases 
(JNK), p-c-Jun, and p-Smad2 expression(117). These recent results indicated 
that TGFβ has anticancer effects mediated by inhibition of CSC survival. 
Differences in the analyzed cell lines and assays most probably account for the 
diverse outcomes. Nevertheless, both studies emphasize the diverse and contro-
versial functions of TGFβ signaling in LCSCs. CD133 expression was upregu-
lated by TGFβ1 stimulation through epigenetic regulation of promoter 
methylation. Furthermore, increased tumorigenicity of TGFβ1-induced CD133+ 
cells compared to CD133− cells was shown (118). A change in the expression 
pattern of stem cell genes, enhancement of their stemness potential, and migra-
tory and invasive capacity was observed in HCC cells, mediated by TGFβ-
induced EMT (119). Similarly, HIF1α-induced EMT, by activation of the Notch1 
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pathway through direct interaction with Notch intracellular domain, promoted 
the CSC characteristics of HCC cells (120). When investigating the tumor micro-
environment, TAMs were found to secrete TGFβ1 that promoted CSC-like prop-
erties through EMT induction (121).

Both HCC cell lines and HCC patient samples were shown to exhibit expres-
sion of at least one key driver of embryonic development such as Oct4, Nanog, 
SOX2, and STAT3 accompanied by the expression of genes of the Wnt/β-catenin 
and TGFβ families (122). Highly enriched CSC populations isolated from differ-
ent liver cancer cell lines maintained a common gene expression signature char-
acteristic of cellular stemness and harbor an activation of NF-κB as well as IL-6 
and Wnt/β-catenin signaling pathways. Each individual cell line typically exhib-
ited an activation of unique oncogenic pathways such as EGFR, MYC, and SRC, 
which are known to be associated with HCC (123).

Isolation of LCSCs

Currently, identification and isolation of LCSCs is achieved through several 
approaches, including (i) detection of SP by the Hoechst 33342 exclusion assay 
(59), (ii) separation using surface markers (124), and (iii) in vitro tumor sphere 
formation (125, 126). SP cells can be detected and isolated by flow cytometry 
through their ability to efflux Hoechst 33342 dye through an adenosine triphos-
phate (ATP)-binding cassette (ABC) membrane transporter. Overexpression of 
ABC proteins was associated with CSCs, conferring drug resistance to them 
(127). SP cells purified from HCC cells were shown to harbor CSC-like proper-
ties (59). However, some restrictions are associated with this isolation approach, 
since the SP compartment contains both stem and non-stem cells, and, on the 
other hand, other stem cells of ill-defined identity are not found in the SP frac-
tion (128). Interestingly, epigenetic modulation increased the frequency of cells 
with CSC properties in the SP fraction isolated from human cancer cells, facilitat-
ing functional isolation of cells, which possess self-renewal and tumor-initiating 
capacity (123). 

LCSCs are commonly isolated from cell cultures or whole liver by fluorescent 
(or magnetic) activated cell sorting using surface markers reported to be specific 
for CSCs of HCC. As already discussed above, the heterogeneity and complex 
nature of CSC biology hamper the reliable use of single—or even combinations 
of—markers to draw reproducible conclusions.

Sphere cultures have been used as a method for the enrichment of stem cells 
relying on their property of anchorage-independent growth. The tumor sphere-
forming cells derived from human hepatoma cell lines were capable of prolifera-
tion and self-renewal, and possess higher tumorigenicity and a general resistance 
to chemotherapeutics (126). Using this approach may favor the selection of a 
specific subpopulation of CSCs during cultivation.

The different ways to isolate LCSCs all have their limitations, and there-
fore, caution has to be taken when comparing results obtained with dissimilar 
approaches. In the future, improved knowledge of the diversity of LCSCs will 
allow to define and selectively isolate these cells. CSC-specific properties, that 
is, unlimited self-renewal, ability to develop a malignant tumor, and resistance 
to chemotherapeutic agents, can be evaluated by some assays in vitro and 
in vivo.
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Characterization of LCSCs

The clonogenic or colony formation assay represents an in vitro cell assay based 
on cell survival and the ability of an individual cell to grow into a colony, thereby 
testing for the ability to divide an unlimited number of times (129). This assay can 
provide information about cell survival and resistance after treatment with differ-
ent agents. However, this assay does have limitations such as the loss of the three-
dimensional environment of a cell within a given tissue. Therefore, the effect of 
cell–cell or matrix–cell communication on cell proliferation cannot be measured. 
Moreover, this assay cannot be used in case the substance concentration decreases 
cell growth but does not affect cell cycle progression and/or DNA synthesis (130).

The ability to form spheres is used to enrich CSCs and can additionally also be 
applied as an in vitro method for assessing the self-renewal and multipotency 
capacity of a given cell population. Three-dimensional spheroids can be formed 
by CSCs containing a heterogeneous population of progenitor cells, which can 
differentiate into multiple cell types under these low-adherence and non- 
differentiating conditions. The ability of cells to form tumor spheres upon multi-
ple passages demonstrates the self-renewal capacity of CSCs, and this potential 
correlates with the number of spheres formed (106). Hypoxia and the low pH in 
the sphere’s core and the characteristics of the inner cells that may be inaccessible 
to metabolites and drugs in comparison to exterior cells are believed to mimic the 
characteristics of solid tumors in vivo. Moreover, this assay has been used to eval-
uate the migration and invasive ability of CSCs. Even though self-renewal of CSCs 
can be usefully assessed by this assay, several limitations have to be acknowledged 
(131). The size of generated spheres and the number of cells that are necessary to 
form spheres strongly depend on the cell type and methodology used. This makes 
the comparison of results from different cell types challenging (132). 

In an in vivo tumorigenicity assay, the tumor cell population of interest is 
transplanted into animal models, followed by an evaluation of their tumor- 
propagating capacity (133). Nevertheless, this assay has some limitations. This 
relates to the use of immunodeficient animals and the fact that the context of 
tumor development is clearly different from recipient animals harboring a normal 
immune system. Additionally, it is important to consider that upon xenotrans-
plantation, the architecture and stroma of the tumor differ compared with its 
native niche. Finally, if the cells used for transplantation are isolated based on a 
selection of markers, the effects of the total population can be lost. Some of these 
constraints can be circumvented by using syngeneic models, by injecting the cells 
orthotopically, or by analyzing different subpopulations simultaneously with the 
total population, although this is not always possible. The transplantation assay is 
the current “gold standard” for identifying CSCs because it can assess both self-
renewal and multipotency. On the other hand, lineage tracing is the current gold 
standard for defining the cell of origin of transformation in mouse models. 
However, it is also being applied to elucidate the proliferative potential and fate of 
stem cells (125). Different cell-specific promoters allow distinct cell subpopula-
tions to be labeled, facilitating tracking of a single cell-derived clone in animals. 
Lineage tracing utilizes (in some cases inducible) Cre transgenic mouse lines, 
 harboring cell type-specific gene promoters to drive Cre expression, and common 
reporter lines, either fluorogenically or colorigenically flanked by a loxP-STOP-
loxP sequence. Cre expression via excising loxP-STOP-loxP cassettes activates the 
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reporter in cells that possess the respective promoter activity. As with other assays, 
there are limitations associated with lineage tracing as well. Labeling efficiencies 
are highly variable depending on the Cre- or reporter-driving promoters. Systems 
frequently become “leaky,” having minor but detectable Cre activity in the absence 
of the inducer, resulting in spontaneous background recombination. One of the 
main limitations is the fact that CSCs or HPCs are a particular heterogeneous 
population that may switch phenotype and marker expression (134) in a context-
dependent manner. Therefore, lineage tracing of these cells focuses on a certain 
subpopulation only. Nevertheless, when carefully considering all potential pitfalls, 
this assay presents a valuable tool to obtain a better understanding of the cellular 
origins of cancer and CSCs (125). Although in vitro assays are convenient and 
faster, until now, the best assay to reliably and robustly assess tumorigenicity has 
been in vivo evaluation.

THERAPEUTIC RESISTANCE OF LCSCS

The effectiveness of standard therapies against HCC, such as chemotherapy, the 
multikinase inhibitor sorafenib, and radiotherapy, is impaired by LCSC-mediated 
resistance (135) (Table 2). Cellular quiescence, DNA repair capacity, and ABC-
transporter expression are characteristics of CSCs mediating chemo- or radio-
therapy resistance and regrowth of the tumor after treatment (128). The increased 
expression of stem cell surface proteins in liver cancer SP cells induced the rapid 
formation of tumor spheres and enhanced transcription of drug efflux genes 
(ABCG2, MDR1, and ABCB5). These cells were resistant to numerous DNA target-
ing drugs (108). CD133+ HCC cells contributed to chemoresistance through pref-
erential activation of Akt/PKB and Bcl-2 cell survival response, thereby supporting 
the opinion that CSCs are the source of tumor recurrence after chemotherapy 
(136). Additionally, these cells were more resistant to radiation-induced apoptosis 
than CD133− cells and exhibited greater proliferation and tumor-initiating capac-
ity in vivo post-radiation (137). Downmodulation of this membrane antigen in 
isolated cells induced both a decrease in their stemness properties and an enhance-
ment in their chemo- and radiosensitivity, at least to some extent, indicating that 
resistance of CD133+ liver CSCs is related to CD133 expression (138). An enrich-
ment of CD90+ and CD133+ cells was observed in tumor spheres obtained from 
the culture of HCC cell lines under serum-free conditions favoring stem cell 
growth. These spheres showed a high overexpression of ABCG2 and Oct4 and 
resistance to chemotherapy drugs (127). Expression of CD13 was shown to 
reduce the extent of DNA damage induced by the production of reactive oxygen 
species following genotoxic stress, thereby protecting cells from apoptosis, and 
thus rendering cells radio- and chemoresistant (95, 96).

In a study that focused on exploring whether CSC markers have a predictive 
role with regard to the sorafenib response in HCC patients, overexpression of 
CD133 and CD90 in HCC was associated with a worse response to the multiki-
nase inhibitor and therefore a shorter progression-free survival time (139). 
Sorafenib-resistant HCC tumor cells show a high expression of CD24. The 
requirement for resistance to sorafenib of this functional marker relied on AKT/
mTOR-mediated autophagy regulation (78). 



Schneller D and Angel P16

Enriched proportions of CD44+ and CD44+CD133+ HCC cells in sorafenib-
resistant cells, as well as upregulation of stemness genes Nanog, SOX2, and Oct4 
in EpCAM-positive HCC cells and enhancement of tumorigenicity after treatment 
with sorafenib (140, 141), further suggest that sorafenib can foster cancer stem-
ness in liver cancer. A subpopulation of CSCs derived from HCC cell lines, referred 
to as label-retaining cancer cells that are distinguished by pluripotency gene 
expression profile, were shown to possess a relative resistance to sorafenib. 
Treatment of these CSCs led to reduced apoptosis and improved viability and was 
accompanied by gene expression profiles, which mark stem cell differentiation 
(142). All results emphasize the role of sorafenib treatment in CSC maintenance 
and CSC-mediated resistance against sorafenib.

TABLE 2  Therapeutic resistance in LCSCs

LCSC marker Resistance Mechanisms Reference

Side population cells 5-FU, gemcitabine, oxaliplatin, paclitaxel, 
cisplatin, etoposide, oxaliplatin

ABCG2, MDR1, 
ABCB5

(108)

5-FU TGFβ/Smad/EGFR (116)

Sorafenib AKT, ERK (142)

CD133 Doxorubicin, fluorouracil Akt/PKB (136)

Radiation MAPK/PI3K (137)

Cisplatin, doxorubicin, radiation Bcl-2/Bax (138)

Sorafenib ABCG2 (168)

CD133, EpCAM Doxorubicin N/A (88)

CD133, CD90 Doxorubicin Oct4, ABCG2 (127)

Sorafenib N/A (139)

CD133, CD44 Sorafenib ABCC1–3 (140)

CD24 Sorafenib AKT/mTOR (78)

Cisplatin STAT3/Nanog (79)

Sorafenib STAT3 (81)

CD90 Doxorubicin PI3K/Akt1 (169)

CD90, EpCAM Cisplatin, doxorubicin cyclin D1/Smad (92)

EpCAM Sorafenib TSC2/AKT (141)

CD13 5-FU, doxorubicin, radiation N/A (95–97)

OV6 Cisplatin Wnt/β-catenin (100)

Sphere-forming cells Cisplatin, 5-FU, gemcitabine, mitomycin, 
sorafenib

N/A (126)

Chemo-resistant 
cells

5-FU, cisplatin, doxorubicin Oct4/AKT/ABCG2 (170)



Cellular Origin of Hepatocellular Carcinoma 17

CLINICAL IMPLICATIONS OF LCSCS

The important role of LCSCs in the initiation, maintenance, relapse, metastasis, 
and drug resistance of HCC has been identified. Therefore, development of novel 
liver cancer diagnosis and treatment strategies will be impacted by the identifica-
tion of signaling pathways as well as stem cell markers activated in LCSCs (58). 
Targeting LCSCs is expected to be a promising approach for the treatment of liver 
cancer (143). 

HCC patients with stemness-associated gene expression traits generally have a 
poor prognosis (23, 24, 123, 144, 145). However, predictive values of single 
LCSC markers still remain controversial (146). Rather, a combination of several 
markers may provide greater specificity and reliability in predicting HCC progno-
sis (24, 147). CSCs can be isolated from peripheral blood mononuclear cells as 
circulating tumor cells due to their highly invasive and metastatic capacity and 
thus may provide diagnostic or prognostic information (89, 148).

In recent years, targeting LCSCs has become a novel strategy to improve the 
outcome of HCC treatment. Targeted therapies based on tumor cell-specific cell 
surface markers have been proposed to specifically eradicate LCSCs (149). 
Anti-CD133 antibody-drug conjugates inhibited CD133+ HCC growth in vitro 
and in vivo (150). Similarly, CD44 blockade prevented the formation of local and 
metastatic tumor nodules by the CD90+ cells (90), and EpCAM blockage via RNA 
interference significantly inhibited cellular invasion, spheroid formation, and 
tumorigenicity of an HCC cell line (86). Additionally, it was shown that the com-
bination of a CD13 inhibitor and the genotoxic chemotherapeutic fluorouracil 
(5-FU) reduced tumor volume compared with either agent alone. 5-FU inhibited 
CD90+ proliferating CSCs, some of which produced CD13+ semiquiescent CSCs, 
while CD13 inhibition suppressed the self-renewing and tumor-initiating ability 
of dormant CSCs (95), suggesting that combining a marker-targeted treatment 
with a chemo- or radiation therapy may improve the treatment of liver cancer.

Some promising targets against LCSCs for the treatment of HCC can be found 
among the several signaling pathways that are essential for the development and 
maintenance of LCSCs (143). Constitutive expression of Wnt/β-catenin was 
detected in LCSCs, and downregulation of it suppressed the cell phenotype (108). 
Employing different inhibitors of this pathway clearly impaired the viability of 
LCSCs as well as decreased the tumorigenicity in vitro and in vivo (151–153). 
Moreover, some phytochemicals have also been demonstrated to restrain the 
self-renewal and proliferationof LCSCs by suppressing Wnt/β-catenin signaling 
(154, 155). Lupeol, another phytochemical, inhibited chemoresistance, self-
renewal ability, and tumorigenicity of CD133+ CSCs, concomitantly sensitizing 
these cells to chemotherapeutic drugs via the PTEN-Akt-ABCG2 signaling path-
way (156). Usage of a small molecule inhibitor targeting TGF-β/Smad signaling 
followed by conventional therapy induced CSC differentiation, resulting in sig-
nificant chemosensitization in vitro and in vivo (92).

Another interesting therapeutic approach is the induction of CSC differentia-
tion into non-CSCs to lose their self-renewal property (149). Oncostatin 
M (OSM), an IL-6-related cytokine, is known to enhance differentiation of hepa-
toblasts into hepatocytes by inducing the activation of the STAT3 pathway (157). 
OSM effectively induced the differentiation of EpCAM+ LCSCs. Moreover, 



Schneller D and Angel P18

combining oncostatin M treatment and 5-FU-based chemotherapy efficiently tar-
geted both CSCs and non-CSCs and ultimately eliminated HCC (158). HNF4α is 
a key transcription factor for hepatocyte differentiation. Differentiation of hepa-
toma cells, especially CSCs, into hepatocytes could be induced by forced 
 re-expression of this protein, which was associated with a decrease in stemness 
gene expression and the relative abundance of CD133+ and CD90+ cells (159). 
Arsenic trioxide also induced cell differentiation, consequently sensitizing LCSCs 
to conventional chemotherapy in HCC (160). All-trans retinoic acid effectively 
induced differentiation of TICs, which potentiated the cytotoxic effects of cispla-
tin (161). High-dose exogenous BMP4 promoted CD133+ LCSC differentiation 
and inhibited the self-renewal, chemotherapeutic resistance, and tumorigenic 
capacity of these cells (162). In addition, inducing differentiation of already pre-
malignant hepatic cells via blocking of mCXCL1 was proposed as a novel thera-
peutic strategy in HCC (163).

One of the recent approaches to target CSCs directly involves immunothera-
pies. Chimeric antigen receptor T cell (CAR-T) targeted against glypican-3 (an 
attractive liver cancer-specific target as it is highly expressed in HCC but displays 
limited expression in normal tissues) was shown to suppress HCC growth (164). 
CSC antigen-targeted CAR-T cells are therefore promising tools for the direct 
eradication of these cells.

Although numerous strategies for targeting LCSCs have been investigated, 
treatments for the eradication of CSCs still require further development until they 
are suitable to enter the clinics. Potential adverse effects on normal stem cells 
should be carefully evaluated because CSCs share similar features with normal 
stem cells. Therefore, the future challenge is to identify specific CSC markers and 
develop a specific treatment for LCSCs.

CONCLUSION

To improve diagnosis, prognosis, and treatment of HCC, it is of uttermost impor-
tance to get a much broader and deeper knowledge about the cancer-initiating cell 
as well as the cancer-propagating cell. For human cancer, the target cell popula-
tion of malignant transformation is controversially discussed, but increasing 
 evidence suggests that different cells of origin (Figure 1) as well as diverse genetic 
mutations account for cancer heterogeneity (58). More recent state-of-the art 
 lineage tracing studies employing different models of experimental hepatocar-
cinogenesis highlight the role of hepatocytes as the cellular origin of HCC 
(Table 1). Not only these studies proved that tumors originated almost exclusively 
from hepatocytes but also ruled out a direct involvement of HPCs in initiating 
carcinogenesis. Nevertheless, most of the investigations were performed in animal 
models which have some limitations. Considering the fact that during chronic 
liver injury a variety of cells can respond to the need for cell replacement and liver 
regeneration (165–167), it is highly likely that the cell of origin of HCC is equally 
context-specific. Therefore, it is crucial to further strengthen the examination of 
human HCC, to identify the cells that give rise to liver tumors and elucidate the 
different classes of tumors based on their molecular features.
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Liver cancers with stemness traits are generally associated with a poor progno-
sis for patients, indicating that CSC markers have both diagnostic and prognostic 
potential. LCSCs are typically resistant to chemo- or radiotherapy as well as 
sorafenib treatment (Table 2) and have been shown to play critical roles in tumor 
progression, maintenance, and recurrence. Targeting surface markers or signaling 
pathways (Figure 1) in, or inducing differentiation of, these cells has already been 
demonstrated to interfere with tumorigenicity in preclinical studies. Although 
these data are promising, there are still some obstacles to overcome before similar 
strategies can enter the clinics. Specificity is one major concern since CSCs share 
identical features with normal stem cells that can be only resolved by unequivo-
cally characterizing LCSCs. So far, the lack of a uniform definition of the CSC 
(sub) populations complicates the reliable comparison of results obtained using 
different approaches to isolate and characterize these cells. Furthermore, LCSCs 
are likely to be distinct and different for each individual tumor, according to 
genetic traits and activated signaling pathways. To define therapeutic targets spe-
cifically aimed at LCSCs, it is essential to face this challenge and consistently work 
on the elucidation of traits that confer CSC properties. 

To conclude, the cellular mechanisms responsible for liver cancer initiation 
and progression need to be clearly defined to facilitate the detection of reliable 
tumor markers for diagnostic and prognostic applications and the development of 
new targeted therapy approaches for liver cancer.
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