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Abstract: Parkinson’s disease is one of the most common neurodegenerative dis-
eases in the elderly. The motor symptoms occur predominantly due to substantial 
dopamine depletion, caused by degeneration of the dopaminergic neurons in 
substantia nigra pars compacta. Apoptosis has been implicated as the main 
mechanism of neuronal death in Parkinson’s disease. Apoptosis is mediated by a 
number of initiator and executioner caspases, and occurs via the intrinsic 
or  extrinsic pathways. Activation of initiator caspase-9 mediates the intrinsic 
pathway—also called the mitochondria-mediated pathway. Alternatively, activa-
tion of initiator caspase-8 mediates the extrinsic apoptotic pathway—the cell 
death receptor–mediated pathway. Both initiator caspases converge onto a com-
mon pathway of executioner caspases, involving caspase-3 and caspase-6. 
Activation of the executioner caspases leads to the morphological features 
characteristic of apoptosis, such as DNA cleavage and its subsequent fragmenta-
tion. Proapoptotic factors, such as Bax, have been implicated in neuronal cell 
death in Parkinson’s disease, and there is evidence that both the intrinsic and 
extrinsic apoptotic pathways may play a role. This chapter provides an overview 
of apoptosis and its significance in Parkinson’s disease.
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INTRODUCTION

Neuronal death occurs during normal development and in response to a myriad 
of pathological factors, such as traumatic injury (1), ischemia (2), infectious 
agents (3), or genetic aberrations (4). The major mechanisms by which neurons 
may die are apoptosis and necrosis. Apoptosis is the predominant mode of neuro-
nal death in many neurodegenerative diseases (5, 6), including Parkinson’s 
 disease (7). Whilst the pathogenic processes of Parkinson’s disease are not com-
pletely understood, convergent mechanisms result in neuronal death through 
apoptosis, making apoptotic pathways interesting potential therapeutic targets. 
Apoptotic cell death has been observed in cell culture and animal models of 
Parkinson’s disease, and also in nigrostriatal regions of the brains of patients with 
Parkinson’s disease at postmortem (8–10). This chapter provides an overview of 
apoptosis and its role in Parkinson’s disease.

APOPTOSIS

Apoptosis—the major pathway for programmed cell death—can be initiated by 
a number of broad classes of death stimuli, including abnormal intracellular cal-
cium concentrations (excitotoxicity) (11), afferent or efferent trophic factor 
deprivation (12), activation of death receptors (13), and stress (12). Neuronal 
apoptosis is common during development and maturation, and is essential for 
shaping of the nervous system and development of appropriate circuitry (14). 
Apoptosis consists of a sequence of events, which are energy dependent. It is 
characterized by specific morphological and biochemical changes, including 
shrinkage of the cell, the chromatin becoming condensed, nuclear DNA frag-
mentation, and formation of apoptotic bodies, which contain nuclear material. 
During this process, the cell membrane retains its integrity. Apoptotic bodies are 
eventually removed by phagocytosis, importantly without a consequent inflam-
matory response (15, 16). Biochemically, apoptosis is characterized by increased 
rates of protein degradation  (17, 18) and increased caspase activity (19). The 
biochemical components of the apoptosis pathways were first described in 
genetic studies on the nematode, Caenorhabditis elegans (20, 21), with subse-
quent studies identifying the mammalian homologues (22–24). These apoptotic 
biochemical components are a group of molecules called the B-cell lymphoma 
(Bcl-2) family, apoptotic peptidase activating factor (Apaf-1), and caspases (25).

Caspases

Caspases constitute a family of at least 14 cysteine proteases that regulate apopto-
sis (26). Caspases are present in normal cells as inactive zymogens, which are 
activated in response to apoptotic stimuli. In general, a single peptide precursor is 
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cleaved, via one or two chronological proteolytic steps, into an active enzyme, 
which consists of large and small subunits (27). Caspases can be subdivided into 
three functional categories: (i) inflammatory caspases-1, -4, -5, -11, -12, -13, and 
-14, are involved in immune responses to microbial pathogens by mediating the 
proteolytic activation of inflammatory cytokines (28, 29); (ii) apoptotic initiator 
caspases-2, -8, -9, and -10, have long pro-domains containing a caspase activation 
and recruitment domain (e.g., caspase -2 and -9), or a death effector domain (e.g., 
caspase -8 and -10); and (iii) apoptotic executioner caspases-3, -6, and -7, have 
short pro-domains. Initiator caspases, which are involved in the initiation of 
apoptosis, are able to carry out auto-cleavage and the cleavage and activation of 
common downstream executioner caspases (30). Executioner caspases do not 
have the ability to perform auto-cleavage, so their activation is dependent on this 
cleavage step. Once activated, the executioner caspases carry out the downstream 
events of apoptosis by cleaving a number of cellular substrates (30). 

Caspases mediate several intracellular events that are important in apoptosis. 
These include:

(i) Disabling homeostatic and repair processes, such as DNA repair (31)
(ii) Cessation of cell cycle progression (31)
(iii) Signal amplification and inactivation of apoptosis inhibitors, through cleavage 

of pro- and antiapoptotic proteins (32)
(iv) Facilitation of nuclear and cytoskeletal disassembly (31)
(v) Marking dying cells for engulfment and disposal (31).

In addition, caspases have been shown to cleave Ca2+-AMPA glutamate recep-
tors, thereby preventing Ca2+-mediated excitotoxicity and subsequent necrosis of 
neurons (33). Though some studies have suggested that caspases may play a role 
in necrotic death in some circumstances (34), in general they divert the cell to an 
apoptotic, rather than necrotic, fate (33, 35).

Apoptotic pathways 

Caspase activation can be triggered by two well-characterized apoptotic pathways: 
the mitochondria-mediated (intrinsic) pathway (Figure 1), and the cell surface 
death receptor (extrinsic) pathway (Figure 2) (36). The intrinsic apoptotic path-
way is mediated by members of the Bcl-2 family and the permeability transition 
pore (PT-pore) (Figure 1) (37). Bcl-2 is a family of proteins that possess either 
proapoptotic (e.g., Bax) or antiapoptotic (e.g., Bcl-2) properties. Members of this 
family exist on the cytoplasmic surface of mitochondria as well as many other 
organelles (38), and act as regulators of the PT-pore (39, 40). Opening of the 
PT-pore at contact sites between the inner and outer mitochondrial membranes 
results in depolarized mitochondria, loss of small molecular weight substances 
from the matrix, and ruptured outer mitochondrial membrane as a result of 
osmotic mitochondrial enlargement (41). The proapoptotic Bcl-2 family proteins 
induce outer mitochondrial membrane permeabilization, leading to release of 
cytochrome c, which normally exists in the mitochondrial intermembranous 
space (42). When released in the cytosol, it is bound by a protein called Apaf-1 in 
an ATP-dependent fashion, resulting in the formation of a multimeric Apaf-1/
cytochrome c complex. The formation of the Apaf-1/cytochrome c complex is 
considered the commitment event that makes caspase activation irreversible, 
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as  this complex recruits procaspsase-9, resulting in formation of the apopto-
some  (43). Procaspase-9 is then activated through proteolysis (42). Once acti-
vated, caspase-9 dissociates from this complex and subsequently activates 
executioner caspases, -3, -6, and/or -7 (43). The construction of an Apaf-1/ 
cytochrome c complex sets a relatively high threshold for caspase activation, pre-
venting inadvertent commitment to apoptotic death due to leakage of cytochrome 
c from the mitochondria (43).

The extrinsic apoptotic pathway is dependent on the activation of cell surface 
death receptors (Figure 2). These constitute a group of trans-membrane proteins 
that belong to the tumor necrosis factor (TNF)/nerve growth factor (NGF) recep-
tor superfamily. These receptors possess extracellular domains which include a 
highly conserved cysteine-rich repeat. Structurally associated molecules belong-
ing to the TNF superfamily are the activating ligands for these death receptors 
(e.g., FAS ligand) (44). Binding of activating ligands to the receptors results in 
receptor trimerisation and recruitment of specific intracellular receptor-associated 
proteins, such as procaspase-8. Procaspase-8 is then immediately cleaved into the 
active form (caspase-8) that comprises two catalytic subunits which are able to 
activate downstream executioner caspases (45). 

The downstream steps in the apoptotic pathways are then mediated by the 
executioner caspases, which cleave a large number of specific substrates (46). 
For instance, caspase-3 and caspase-7 inhibit DNA repair by cleaving the nuclear 
enzyme poly(ADP-ribose) polymerase (PARP), which normally participates in 
DNA repair (47). Caspase-3 also degrades DNA-dependent protein kinase 

Figure 1 The intrinsic apoptotic pathway. In response to apoptotic stimuli, proapoptotic proteins, 
such as Bax, induce the permeabilization of the outer mitochondrial membrane, leading to 
release of cytochrome c from the mitochondrial intermembranous space. Cytochrome c is then 
bound to Apaf-1, resulting in the formation of a multimeric Apaf-1/cytochrome c complex 
that recruits procaspase-9 forming the apoptosome. Consequently, procaspase-9 is activated 
through proteolysis and subsequently dissociated from this complex. Once activated, 
caspase-9 activates executioner caspases-3, -6, and/or -7, which mediate proteolytic events 
that eventually lead to apoptosis.
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(DNA-PK), leading to reduced DNA repair capacity of the cell and subsequent 
promotion of the characteristic DNA cleavage that occurs in apoptosis (48). 
Furthermore, caspase-3 digests cytoskeletal proteins, such as actin and fodrin 
inducing cell shrinkage and membrane blebbing (49). Caspase-3 also leads to 
chromatin condensation and nuclear fragmentation through proteolytic activa-
tion of protein kinase C delta (50). Caspase- 6 cleaves lamins, the main struc-
tural proteins of the nuclear envelope, resulting in nuclear shrinkage and the 
ultimate formation of apoptotic bodies (51). Morphological features of apopto-
sis include chromatin condensation, which starts peripherally along the nuclear 
membrane forming a ring-like structure, internucleosomal fragmentation of 
double-stranded DNA, and nuclear fragmentation (52). In addition, other mor-
phological characteristics of apoptosis are membrane blebbing (53), cell shrink-
age (54), and formation of apoptotic bodies, which are tightly packed with 
cytoplasmic organelles and nuclear fragments, and are ultimately engulfed by 
neighboring cells without provoking inflammation (55). The chief molecular 
components of apoptosis in neurons are the same as those in other nonneuronal 
cell types (56). 

Figure 2 The extrinsic apoptotic pathway. Specific death signal ligands bind to death 
receptors, resulting in receptor trimerisation, and subsequent recruitment of specific 
intracellular receptor-associated proteins, such as procaspase-8. Procaspase-8 is then 
immediately cleaved into the active form, which is able to activate downstream executioner 
caspases-3, 6, and/or 7 that mediate proteolytic events of cellular proteins and structures 
eventually leading to apoptosis.
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APOPTOSIS IN PARKINSON’S DISEASE

Apoptosis is the main mechanism of neuronal loss in Parkinson’s disease, as evi-
denced by the identification of DNA fragmentation and apoptotic chromatin 
changes in dopaminergic neurons of Parkinson’s disease patients in postmortem 
studies (10). In addition, the role of apoptosis in the pathogenesis of Parkinson’s 
disease was confirmed in postmortem and in vitro studies that illustrated elevated 
activity of caspase-3 and increased expression of active caspase-3 in substantia 
nigra pars compacta (57–59). Furthermore, dopaminergic neuronal death is 
inhibited by overexpression of anti-apoptotic proteins, such as Bcl-2, in cell mod-
els of Parkinson’s disease (60). Caspase inhibitors have also been shown to rescue 
neurons from death in cell models of Parkinson’s disease, adding further support 
to the notion that apoptosis is the main mechanism of neuronal death in Parkinson’s 
disease (61). Elevated levels of proapoptotic proteins, such as Bax, have also been 
seen in postmortem brain tissue from Parkinson’s disease patients (62).

Whilst there is some suggestion that the extrinsic apoptotic pathway may be 
active in Parkinson’s disease, its role remains unclear. The predominant mecha-
nism of neuronal death is thought to be the intrinsic apoptotic pathway. 
Mitochondria-mediated apoptosis has been extensively studied in Parkinson’s dis-
ease. It involves a sequence of events including increased generation of reactive 
oxygen species, cytochrome c release and ATP depletion, as well as caspase-9 and 
caspase 3 activation (63). It remains unclear as to how the multiple pathogenic 
processes of PD such as alpha-synuclein (α-synuclein) aggregation and mitochon-
drial dysfunction, for example, interact with one another to converge toward 
apoptotic cell death. In the remainder of this section, some of the possible triggers 
of apoptosis in Parkinson’s disease are discussed. These include the interaction of 
α-synuclein with the mitochondrial membrane, the presence of nuclear DNA 
mutations, accumulation of mitochondrial DNA deletions, and mitochondrial 
dysfunction through other mechanisms (64).

α-synuclein is abundantly expressed in the central nervous system, par-
ticularly presynaptically (65). It is prone to fibrillar aggregation forming a 
major component of the Lewy bodies that are the pathological hallmark of 
Parkinson’s disease (65). α-synuclein aggregates and inclusions are formed in 
Parkinson’s disease brains, and rodents and cells treated with mitochondrial 
toxins (66–68). Accumulation of wild-type α-synuclein in dopaminergic neu-
rons leads to decreased activity of mitochondrial complex I and increased 
reactive oxygen species generation—an effect which is more pronounced by 
the expression of the aggregation-prone mutant A53T α-synuclein (69). 
α-synuclein has also been shown to localize to the mitochondrial membrane 
in SHSY cells overexpressing A53T mutant or wild-type α-synuclein, and in 
isolated rat brain mitochondria (70), and this interaction has been suggested 
to lead to oxidative stress and the release of cytochrome c into the cytosol, in 
in vitro systems. Subsequent to its release into the cytoplasm, cytochrome c 
interacts with pro-survival, antiapoptotic proteins, triggering mitochondria- 
mediated apoptosis (70, 71). 

Indeed, mitochondrial dysfunction may be an early occurrence in humans and 
in animal models of Parkinson’s disease (72–74). A defect in the activity of mito-
chondrial complex I has been observed in substantia nigra of Parkinson’s disease 
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patients (75). Dopamine metabolism leads to the generation of reactive oxygen 
species, which may lower the threshold for apoptotic cell death (76–78). Dopamine 
is enzymatically metabolized by monoamine oxidase (MAO), leading to the pro-
duction of H2O2, which subsequently yields reactive oxygen species (76–78). 
Degradation products of dopamine undergo autoxidation, leading to increased 
reactive oxygen species generation (76–78). Hence, nigral dopaminergic neurons 
are particularly susceptible to dysfunction of mitochondrial complex I (79), which 
is believed to be one of the principal sources of reactive oxygen species in 
Parkinson’s disease. Reactive oxygen species production may therefore represent a 
potential important mechanism contributing to dopaminergic neuronal death 
through apoptosis (80). Defects in the activity of mitochondrial complex I are 
proposed to increase the susceptibility of dopaminergic neurons for degeneration, 
through lowering of the threshold for activation of the intrinsic apoptotic pathway 
(62, 81–83).

A number of mitochondrial toxins result in selective degeneration of dopaminer-
gic nigral neurons through apoptosis, lending support to the idea that these neurons 
are particularly susceptible to mitochondrial dysfunction. These include 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and 6-hydroxydopamine 
(6-OHDA), which inhibit mitochondrial complex I causing mitochondrial dysfunc-
tion and generation of reactive oxygen species (8, 84, 85).

Dopamine itself is suggested to inhibit mitochondrial complex I, resulting in 
mitochondrial dysfunction (86). It undergoes autoxidation causing the excessive 
production of toxic metabolites that lead to oxidative stress and mitochondrial 
swelling and subsequent opening of the mitochondrial transition pore, which 
results in the release of anti- and proapoptotic factors (87, 88). Hence, cyto-
chrome c is released into the cytosol, where it induces the intrinsic apoptotic 
pathway (87, 89, 90). It is also associated with significant increase in p53 phos-
phorylation, which is suggested to induce apoptosis (91, 92). Addition of antioxi-
dants inhibits the activation of caspase-9 and caspase-3 and prevents apoptosis in 
response to dopamine exposure, supporting the fact that reactive oxygen species 
are important in dopamine-induced apoptosis (87, 90). Furthermore, overex-
pression of the antiapoptotic factor Bcl2 can partially attenuate dopamine-induced 
apoptosis (93). 

MPTP is a neurotoxin that is selective to dopaminergic neurons of the substan-
tia nigra pars compacta (94). MPTP is a lipophilic substance that actively crosses 
the blood–brain barrier to enter the central nervous system, where it is  transformed 
to its active metabolite called MPP+ (1-methyl-4-phenylpyridinium) (95). This 
conversion is carried out by MAO that is present in the glial cells (95). Following 
its reuptake by dopamine transporter, MPP+ builds up in the mitochondria of 
dopaminergic neurons inhibiting the mitochondrial complex I, leading to ATP 
depletion and increased generation of reactive oxygen species (96, 97). As a con-
sequence, nigrostriatal dopaminergic neurons die via apoptotic pathways involv-
ing caspases (98). MPTP-induced apoptosis is characterized by reactive oxygen 
species generation, cytochrome c release, p53 expression, cleavage of caspase-3, 
and DNA fragmentation, as well as by other morphological features characteristic 
for apoptosis (59, 99). MPTP-induced apoptosis is attenuated by overexpressed 
Bcl-2 levels (100, 101). 

Similarly, rotenone inhibits mitochondrial complex I, resulting in the overproduc-
tion of reactive oxygen species and oxidative stress (102). Consequently, depletion in 
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ATP levels occurs resulting in selective nigrostriatal dopaminergic degeneration via 
mitochondria-mediated caspase-dependent apoptosis (102). 

6-OHDA inhibits mitochondrial complex I, induces Bax, and causes activation 
of caspase-3 and caspase-9 (103). 6-OHDA-induced dopaminergic neuronal degen-
eration is attenuated by caspase inhibitors (104). 6-OHDA also induces apoptosis 
that occurs via a mitochondria-dependent pathway (85). Whilst these nigral toxin 
models are not necessarily truly reflective of the pathogenic mechanisms that are 
occurring in patients, they offer insight into the susceptibility of nigral neurons to 
mitochondria-mediated apoptosis.

A number of inherited forms of Parkinson’s disease occur due to mutations in 
genes related to mitochondrial health and function. These include mutations in 
Parkin, LRRK2, PINK1, and DJ-1, for example (105). Whilst these mutations are 
rare within the Parkinson’s disease population, they offer some supportive evi-
dence to the fact that nigral neurons are susceptible to mitochondrial damage and 
mitochondria-mediated apoptosis, and that these processes may be relevant in 
idiopathic Parkinson’s disease.

Parkin deficiency results in mitochondrial dysfunction in mice (106). Parkin 
has many roles that are potentially relevant in Parkinson’s disease pathogenesis. 
For example, it can promote mitochondrial biogenesis, mtDNA replication, and 
transcription of mitochondrial genes (107). Thus, Parkin is vital for mitochon-
drial respiration and function (107). In addition, Parkin acts as an E3 ubiquitin 
protein ligase that targets particular substrates for degradation via the ubiquitin-
proteasome system, including the glycoslyated form of α-synuclein (108). The 
loss of Parkin activity is thought to contribute to the buildup of toxic protein 
aggregates causing Parkinson’s disease (108). Interestingly, Parkin acts down-
stream of one of the other aforementioned genes—PINK1—a mitochondrial 
kinase in which mutations can cause an autosomal recessive familial form of 
early onset Parkinson’s disease. This is demonstrated by the fact that Parkin over-
expression can compensate for mutations in PINK1 (109, 110). Whilst the 
mechanisms by which these mutations precipitate Parkinson’s disease pathology 
are unclear, there is some evidence that the PINK1-Parkin pathway may play a 
role in susceptibility to mitochondria-mediated apoptosis. For example, upregu-
lation of wild-type PINK1 reduces cytochrome c release and caspase activation 
(111, 112). 

Mutations in DJ1, which is present in the mitochondrial matrix and intermem-
branous space, can cause early onset Parkinson’s disease (113). Lack of DJ1 
increases susceptibility to free radical-associated injury (114), whilst overexpres-
sion of wild-type DJ1 can be protective (115). Mutations in DJ1 result in increased 
oxidative stress. In addition, mutant DJ-1 binds very tightly to mitochondrial 
Bcl-XL, which is an antiapoptotic protein, resulting in dissociating Bax from 
Bcl-XL and its subsequent enrichment in the outer mitochondrial membrane, 
leading to the dopaminergic neuronal degeneration via mitochondria-mediated 
apoptosis (116).

In vitro studies have suggested a toxic gain of function brought about by LRRK2 
mutations that cause Parkinson’s disease (117). LRRK2 mutation can lead to defec-
tive mitochondrial morphology and dynamics and increase generation of reactive 
oxygen species in cells (118). LRRK2 mutations have been suggested to cause 
dopaminergic neuronal death by mitochondria-mediated apoptosis subsequent 
to  mitochondrial dysfunction. Apoptosis can be induced in vitro by the 
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overexpression of mutant LRRK2 with cell death being prevented by caspase 
inhibitors and genetic ablation of Apaf1 (61).

Mitochondrial DNA deletions have been observed in nigrostriatal dopaminer-
gic neurons in aging and Parkinson’s disease, possibly increasing their susceptibil-
ity to mitochondria-mediated apoptosis (119, 120). Mechanisms underlying 
mitochondrial DNA deletions are unknown with the possible involvement of oxi-
dative stress (121). Combination of mitochondrial DNA depletion and deletion 
(without any alteration in the overall mitochondrial mass) results in reduced 
mitochondrial function and integrity, which increases the risk of cytochrome c 
release and apoptosis (122, 123). In addition, a rare form of inherited PD may 
occur due to mutations in the nuclear gene encoding DNA polymerase G (POLG), 
which plays an important role in the expression of a number of the genes encoded 
in mitochondrial DNA (124, 125).

THERAPEUTIC IMPLICATIONS

Given that the end-point of the Parkinson’s disease pathogenic pathway is 
 apoptotic neuronal death, treatments that target the molecular and biochemical 
events that allow progression of apoptosis may protect against the loss of dopami-
nergic neurons. As has been discussed, apoptosis is dependent on caspase activa-
tion (126). Thus, caspase inhibition has been considered as a novel therapeutic 
approach in neurodegenerative diseases occurring via apoptosis (126). Indeed, 
caspase inhibition prevents cell death of dopaminergic substantia nigra pars 
 compacta neurons induced by MPTP or its active metabolite MPP+ in vitro and 
in vivo (127). However, although the dopaminergic neurons could be rescued, the 
nigrostriatal terminals were disrupted, suggesting that this approach may simply 
allow for the survival of dysfunctional neurons, suggesting that inhibition of 
apoptosis alone may in fact be detrimental (127). However, concomitant admin-
istration of glial cell line-derived neurotrophic factor (GDNF) circumvented this 
problem, allowing for restoration of striatal dopamine concentrations (127). It 
may therefore be feasible that caspase inhibition in combination with specific 
growth factors could play a role in future treatment of Parkinson’s disease.

Interfering with events in the induction phase of apoptosis upstream to activa-
tion of caspases was regarded as strategy to prevent death of dopaminergic neu-
rons and restore their function (128–132). For instance, Bax is upregulated in 
dopaminergic neurons subsequent to MPTP treatment (128). In addition, genetic 
deletion of Bax prevented dopaminergic neurodegeneration in the MPTP mouse 
model of nigrostriatal degeneration (128). Furthermore, Bax inhibition could 
decrease the loss of the nigral dopaminergic neurons that was caused by intrastria-
tal administration of 6-OHDA, suggesting Bax-inhibiting peptides as possible 
therapeutic avenue for Parkinson’s disease (129).

The propargylamine derivative CGP 3466 (dibenzo[b,f]oxepin-10-ylmethyl-
methyl-prop-2-ynyl-amine) has been shown to possess neuro-rescuing and anti-
apoptotic characteristics (130). CGP3466B suppresses neuronal apoptosis by 
upregulating protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1), 
which is an enzyme that repairs damaged L-isoaspartyl residues in intracellular 
proteins. Upregulated PCMT1 leads to overexpression of the antiapoptotic Bcl-2 
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and underexpression of the proapoptotic Bax and active-caspase3, and thus inhib-
iting mitochondria-dependent apoptosis (133). Concomitantly, it prevents dopa-
minergic cell death both in vitro and in rodent models of Parkinson’s disease, and 
it consequently inhibits the development of MPTP- and 6-OHDA-induced motor 
symptoms (131, 132). Consequently, CGP 3466 may be promising in inhibiting 
dopaminergic neuron degeneration and the consequent progression of the neuro-
degenerative process in patients with Parkinson’s disease (131, 132). Thus, treat-
ments that interfere with the apoptotic pathways may represent promising 
therapeutic strategies in the protection against the loss of dopaminergic neurons 
and the subsequent pathogenesis of Parkinson’s disease in the patients. 

Having discussed these approaches, it must be acknowledged that there are 
concerns regarding the targeting of apoptosis in neurodegenerative disease. As 
has been discussed in this chapter, apoptosis in PD is thought to be triggered 
by a number of intracellular pathologies, with mitochondrial dysfunction being 
particularly important. Inhibition of apoptosis, therefore, may prevent the pro-
grammed removal of dysfunctional, nonviable neurons, which may ultimately 
lead to necrosis and a potential inflammatory response. In cell culture models 
of Parkinson’s disease, treatment with caspase inhibitors did indeed trigger a 
switch from neuronal apoptosis to necrosis (134). In addition, although genetic 
deletion of Bax inhibited dopaminergic neuronal death in response to 6-OHDA 
in transgenic mice, it could not improve behavioral deficits that were associ-
ated with Parkinson’s disease, and the surviving dopaminergic neurons dis-
played marked neuronal atrophy (135). Furthermore, systemic administration 
of an antiapoptotic compound may allow for the prolonged survival and accu-
mulation of dysfunctional and potentially neoplastic cells in many tissues, 
which would clearly be detrimental. Thus, although apoptosis is the final step 
in the pathogenic pathway in PD, it remains to be seen whether or not inhibi-
tion of apoptosis in Parkinson’s disease can be effective and safe, and cautious 
evaluation is necessary.

CONCLUSION

Apoptotic cell death is suggested to be involved in the pathogenesis of Parkinson’s 
disease based on in vitro, in vivo, and human postmortem studies. Elucidation of 
the triggers of the apoptotic process in Parkinson’s disease can lead to a better 
understanding of the sequence of events that result in programmed cell death in 
Parkinson’s disease. Consequently, it would be possible to identify the potential 
factors that can be targeted therapeutically to stop or slow the progression of the 
disease and to recognize the individuals who are susceptible to developing 
Parkinson’s disease at early and preclinical stages. 
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