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Abstract: Inflammation is a key feature of Parkinson’s disease (PD). In postmortem 
PD brains, microglial activation and enhanced major histocompatibility class  II 
(MHCII) expression are seen concomitant to the accumulation of alpha-synuclein 
(α-synuclein) and loss of dopaminergic cells in the substantia nigra. Recent find-
ings showed that α-synuclein epitopes can be presented and recognized by T-cells. 
PD is not a single disorder; rather, it encompasses a range of clinical, epidemiologi-
cal, and genetic subtypes. Around 10% of the cases have a monogenic origin, and 
several of the disease-causing mutations are linked to inflammatory processes. The 
remaining 90% of the cases are complex, where environmental and genetic risk 
factors synergize to induce PD pathology. To date, 41 genetic loci have been 
identified in genome-wide association studies as associated with PD risk, and 
among these, two are within the HLA region, coding for immune genes including 
MHCII. Thus, genetic and immune findings indicate that the immune system has 
a role in the etiology of PD. Experimentally, inflammatory stimuli can cause selec-
tive nigral cell loss in preclinical models of PD, and MHCII is required to elicit 
α-synuclein-induced pathology in mice. In this chapter, we focus on immunogenet-
ics, that is, the relation between genetic risk factors and immune processes in PD.
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INTRODUCTION

Parkinson’s disease (PD) is an increasingly prevalent and progressively disabling 
neurodegenerative disease that encompasses a range of clinical, epidemiological, 
and genetic subtypes (1). The high inter-individual variation in onset, progres-
sion, and symptoms is in part due to a complex interplay between genes and 
environment. According to the latest criteria by the International Parkinson and 
Movement Disorders Society, PD diagnosis should be based on the presence of 
general bradykinesia in combination with either rest tremor, rigidity or both (2). 
Neuropathologically, PD is characterized by loss of nigral dopaminergic neurons 
that innervate the striatum and pathological accumulation of α-synuclein in Lewy 
bodies and Lewy neurites (3). In addition to the neurodegenerative phenotype, 
local neuroinflammation is a hallmark of PD and includes activation of microglia 
and astrocytes as well as an upregulation of major histocompatibility class II 
(MHCII) molecules. The inflammatory activation in PD is not only confined to the 
brain but also involves the peripheral immune system. One example is the 
increased expression of inflammatory molecules both in the central (4) and 
peripheral nervous systems (5). At a cellular level, there is an increased infiltration 
of immune cells into the brain parenchyma and an altered peripheral leukocyte 
profile in PD (6). The finding that α-synuclein epitopes can be recognized by 
T-lymphocytes (7) further strengthens the notion that PD is an inflammatory dis-
ease, with both innate and adaptive immune responses. Although these findings 
strongly link inflammation to PD, they do not answer whether inflammation is a 
cause or consequence of the disease. However, the recent advances in genetic 
analyses of familial and idiopathic PD strongly support inflammatory processes to 
play a critical role in disease etiology. 

ETIOLOGY OF PARKINSON’S DISEASE

Genetic studies of familial PD have led to the identification of disease-causing muta-
tions in single genes, that is, monogenic forms of PD. Mutations that have been 
causatively linked to PD are located to the genes encoding α-synuclein (SNCA), 
leucine-rich repeat kinase 2 (LRRK2), vacuolar protein sorting-associated protein 35 
(VPS-35), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ1 (PARK7), 
and glucocerebrosidase (GBA) (8) (Figure 1). Although mutations in these genes are 
rare and only account for <10% of all PD cases (9), they have identified key molecu-
lar players and processes in PD etiology. This can be illustrated by SNCA, which is 
both neuropathologically and genetically linked to PD. Lewy bodies and Lewy 
neurites containing α-synuclein accumulations are present in both familial and idio-
pathic PD, and in addition to SNCA mutations and copy number variations (CNVs) 
linked to dominantly inherited monogenic PD (10), common genetic variants in 
SNCA are associated with increased risk of developing idiopathic PD (11).
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In 90% of PD patients, there is no monogenic inheritance pattern, and the 
disease is determined as idiopathic. Idiopathic PD is sometimes referred to as 
sporadic but has a multifactorial etiology, where environmental and genetic fac-
tors interact, synergize, and together determine an individual’s susceptibility to 
disease. The genetics of idiopathic PD is therefore complex, similar to many other 
common conditions like Alzheimer’s disease, diabetes, and different forms of 
cancer. In the quest to understand the etiology of idiopathic PD, efforts have been 
made to identify genetic variants associated with disease risk. These variants 
include single nucleotide polymorphisms (SNP; the change of a single base pair) 
and structural variants (microsatellites, minisatellites, insertions, deletions) that, 
depending on their frequency in the population, are defined as polymorphisms 
(>1%) or mutations (<1%). Genome-wide association studies (GWAS) are based 
on the genetic association analysis of SNPs covering the entire genome. Due to the 
large number of SNPs examined, the analysis is unbiased, but requires large sam-
ple sizes. Meta-analyses of several different GWAS have identified 41 PD risk loci 
(12, 13), each representing common genetic variants conferring an increased risk 
of developing PD (Figure 1).

In 1983, exposure to the heroin side product 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) was identified as the causative agent for severe 
irreversible parkinsonism in humans and primates (14). MPTP crosses the 
blood–brain barrier and is converted to MPP+, which accumulates in dopami-
nergic neurons through dopamine transporters. MPP+ inhibits complex 1 of the 
electron transport chain, leading to impaired mitochondria and loss of nigral 
dopaminergic neurons. Although MPTP is not present as an environmental haz-
ard, it pointed out the potential of the molecule to induce parkinsonism and 
increased interest in environmental risk factors for PD. Exposure to pesticides 
such as rotenone, paraquat, organophosphates, and pyrethroids has been asso-
ciated with increased risk of PD in several case-control studies (15). The mecha-
nisms behind the risk increments are not completely understood but, like MPTP, 
rotenone and paraquat are thought to induce dopaminergic degeneration 
through oxidative stress and damage. Rotenone acts on complex 1 of the respi-
ratory chain, while paraquat triggers a redox cycle that generates toxic superox-
ide free radicals. 

Environmental and genetic factors are now considered to act in a synergistic 
manner and modify the risk for idiopathic PD. One such example is genetic 
variations in glutathione transferase genes which modify the risk conferred by 
paraquat exposure (16). The risk of PD has also been reported to be increased by 
head trauma (17) and recurrent CNS infections (18), while moderate amounts of 
nicotine, caffeine consumption, and the use of non-steroid anti-inflammatory 
drugs have been reported to reduce the risk for PD (19). Thus, genetic and envi-
ronmental factors act together to modify PD risk.

IMMUNOGENETICS OF MONOGENIC PD

Advances in the genomics field have generated unprecedented opportunities to 
define the genetic basis of complex diseases. By applying a genetic strategy, 
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one can discriminate between causes and consequences of a disease. Furthermore, 
in situations where a specific gene variant affects the response to therapy, knowl-
edge about an individual’s genotype can inform clinical decisions. Immunogenetics 
specifically studies the relationship between genetics and the immune system, 
that is, how genetic variants contribute to the inter-individual variation in immune 
responses.

Autosomal dominant forms

Interestingly, many of the genetic variants linked to monogenic PD also play a 
critical role in modulating inflammatory responses. Mutations in LRRK2 account 
for 1–2% of all PD cases (20, 21), but the prevalence varies substantially depend-
ing on the population studied. The penetrance is not complete, meaning environ-
mental factors and/or other genes can modulate the disease-causing effect of 
LRRK2 mutations. LRRK2 encodes a large protein with multiple functions and has 
a moderate homology to the receptor-interacting protein kinases, a family of 
kinases with a known role in immunity. Expression of LRRK2 in microglia is 
induced by pro-inflammatory stimuli and affects microglial activation (22). 
LRRK2 is also expressed in many other tissues (23), including peripheral immune 
cells, where its expression is increased by inflammatory mediators such as 
interferon-γ (IFNγ) and lipopolysaccharide (LPS) (24, 25). Variants at the LRRK2 
locus have been reported to confer increased risk of Crohn’s disease (26) and 
leprosy (27). In idiopathic PD patients, the expression of LRRK2 in B-lymphocytes, 
T-lymphocytes, and monocytes is increased compared to controls and is positively 
correlated with cytokine expression in T-lymphocytes (28). LRRK2 is thus strongly 
linked to immune processes in the CNS and periphery and is a promising thera-
peutic target for both monogenic and idiopathic PD. 

Mutations in the SNCA gene and the presence of the encoded protein, 
α-synuclein, in Lewy bodies were described in 1997 (29, 30), revealing the func-
tional link between α-synuclein and PD. α-synuclein is a nuclear and presynaptic 
protein, and its overexpression and aggregation within neuron somas and neu-
rites precedes neurodegeneration of dopaminergic cells. Several animal models 
have been developed that overexpress human α-synuclein in dopaminergic neu-
rons (31), leading to α-synuclein accumulation, dopaminergic neurodegenera-
tion, and microglial activation (32–34). Human macrophages upregulate 
α-synuclein after LPS stimulation (35), while microglia from mice lacking 
α-synuclein present a highly activated phenotype in terms of cytokine profile and 
morphology (36, 37). α-synuclein is a ligand for toll-like receptor 2 (TLR2) on 
microglia (38), linking α-synuclein to the innate immune system. TLR2 is also 
present on T-lymphocytes, B-lymphocytes, monocytes, and macrophages, cells 
that are part of the adaptive immune system. Recently, it was reported that 
α-synuclein epitopes can be presented on MHC molecules and activate both 
helper and cytotoxic T-lymphocytes (7). α-synuclein can thus elicit both innate 
and adaptive immune responses.

Autosomal recessive forms

Parkin, PINK1, and DJ-1 are linked to autosomal juvenile recessive parkinsonism. 
These three genes are involved in mitochondrial function and oxidative stress 
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and are also coupled to immune responses. Although loss-of-function mutations 
in the parkin gene (encoding an E3 ubiquitin ligase) cause early loss of dopami-
nergic neurons in patients, parkin-deficient mice do not display nigrostriatal 
pathway degeneration unless they are challenged with low dose of LPS (39). The 
need of an inflammatory stimulus suggests that the loss of parkin function 
increases the vulnerability of nigral dopaminergic neurons to inflammation-
related degeneration or vice versa. Gene expression profiling in PINK1-deficient 
mice showed that loss of PINK1 altered the expression of immunomodulatory 
genes in the striatum (40). In addition, systemic LPS treatment induced higher 
levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-12, and tumor 
necrosis factor α (TNFα) in brain homogenates from PINK1-deficient mice com-
pared to wild-type mice. DJ-1 is implicated in mitochondrial function as a regu-
lator of oxidative stress rather than mitophagy (41). In the human brain, DJ-1 is 
mostly expressed by astrocytes (42), and  astrocytes from DJ-1-deficient mice 
display an augmented response to LPS and produce more inflammatory cytokines 
such as IL-6, possibly via increased activation of MAPK p38 and JNK (43). Loss-
of-function of parkin, PINK1, and  DJ-1 thus seem to increase the sensitivity 
of  dopaminergic neurons to  degeneration through oxidative stress and pro-
inflammatory immune responses.

IMMUNOGENETICS OF IDIOPATHIC PD

The availability of high-throughput technologies has allowed genotyping of 
hundreds of thousands to millions of SNPs in the human genome in a cost and 
time-efficient manner. These technological advancements allow large-scale 
GWAS, which identify associations between genetic variants and a particular 
trait or disease. In case-control studies, SNP allele frequencies are compared 
between patients and controls (44). To date, meta-analyses of GWAS have iden-
tified 41 risk loci associated with PD (12, 13). One of the challenges of associa-
tion studies is the identification of the casual variants, which are most likely 
genetic variants in linkage disequilibrium (LD) with genotyped SNPs. The con-
sequence of LD, that genetic variants located on the same chromosome have a 
distance-dependent likelihood of a recombination event during meiosis, is that 
closely located variants often are inherited together. In addition, associated 
SNPs can be attributed to different candidate genes and biological function 
depending on the genetic map used and the availability of gene expression data. 
Most PD-associated variants confer relatively small risk increments, and the 
majority are found in non-coding regions regulating gene expression. Such vari-
ants are also known as expression quantitative trait loci (eQTLs) and can 
regulate the expression of multiple genes. Allele-dependent expression of 
immune-related genes has been reported for eQTLs near or in SNCA, LRRK2, 
HLA-DQB1, and MAPT (45), with antigen presentation being the most enriched 
regulated process. Below, we discuss the immune functions of HLA (Figure 2) 
and other risk loci identified for idiopathic PD (Figure 3) in two GWAS 
meta-analyses (12, 13).
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Figure 2  Single nucleotide polymorphisms (SNPs) in the human leukocyte antigen (HLA) locus 
associated with increased risk for Parkinson’s disease (PD). Map of HLA class I, II, and III 
regions indicating alleles and SNPs associated with PD. An asterisk (*) denotes that the SNP 
is acting as an expression quantitative trait locus (eQTL). (Adapted from Ref. 85).
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From the 41 risk loci identified by GWAS, two are within the human leukocyte 
antigen (HLA) region. HLA is one of the most polymorphic regions in the human 
genome and presents a complex combination of alleles in high LD (Figure 2). 
HLA class I and class II genes encode MHCI and MHCII molecules that present 
antigens to CD8+ and CD4+ T-lymphocytes, respectively, and thereby regulate 
adaptive immune responses. Different HLA alleles encode MHC molecules with 
different antigen-binding affinity and are associated with numerous disorders, 
including autoimmune diabetes and rheumatoid arthritis (46). A combined 
GWAS of PD with type 1 diabetes, Crohn’s disease, ulcerative colitis, rheumatoid 
arthritis, celiac disease, psoriasis, and multiple sclerosis identified 17 loci 
shared between PD and these autoimmune disorders (47). Most of the PD risk 
alleles, including HLA-DQB1, HLA-DRB5, MAPT, and LRRK2, also increased the 
risk for the autoimmune disorders. Others, including BOLA2, SETD1A, CXCR4, 
IL12A, and GAK, had opposite effects. The identification of common genetic 
pathways for PD and autoimmune disorders further strengthens the importance 
of immunogenetics and immune therapy in PD.

Several studies have found association between SNPs and alleles in the HLA 
class II region and PD. These are summarized in Tables 1 and 2 and outlined 
in Figure 2. Using a GWAS approach, Hamza et al. reported a non-coding variant 
in HLA-DRA (rs3129882) associated with late-onset PD (48). This variant has 
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TABLE 1	 Key HLA Haplotypes Associated with PD

HLA allele
Association 
with PD

Meta-analysis 
p-value

Meta-analysis 
Odds ratio (OR) Reference

B*07:02 Risk 3 × 10−4 1.23 (85)

B*40:01 Protective 2 × 10−3 0.76 (85)

C*03:04 Protective 8 × 10−6 0.72 (85)

C*07:02 Risk 2 × 10−4 1.23 (85)

DRB1*04:04 Protective 4 × 10−5 0.65 (85)

DRB1*15:01 Risk 6 × 10−5 1.26 (85)

DRB4*01 Protective 4 × 10−5 0.83 (85)

DRB5*01 Risk 5 × 10−5 1.25 (85)

DQA1*01:02 Risk 1 × 10−3 1.17 (85)

DQA1*03:01 Protective 1 × 10−6 0.77 (85)

DQB1*03:02 Protective 7 × 10−6 0.74 (85)

DQB1*06:02 Risk 4 × 10−5* 1.26* (86)

Class I and class II HLA alleles associated with PD together with meta-analysis data for p-values and odds ratios.
HLA, human leukocyte antigen; PD, Parkinson’s disease.
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Figure 3  Insights into the immunogenetics of Parkinson’s disease (PD). Schematic illustration of 
the link between genetic risk factors and immune mechanisms underlying PD development. 
Genes (indicated in bold italics) represent nominated risk genes for idiopathic and/or 
monogenic PD. 
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been reported to be a cis-acting eQTL that correlates significantly with expression 
levels of HLA-DRA, DRB5, and DQA2 (49, 50). Studies following the GWAS 
approach, conducted in a Dutch population by the International Parkinson 
Disease Genomics Consortium, confirmed the association of the HLA class II 
region (rs4248166 and chr6:32588205, respectively) with PD (51, 52). Another 
study reported the presence of three HLA class II variants (not in LD) to be signifi-
cantly associated with PD risk (53). Taken together, several studies confirm the 
association of the HLA class II region with PD risk and suggest associated variants 

TABLE 2	 SNPs in the HLA Region Associated with PD

SNP
Allele/
gene Tissue p-value Effect size

Data base/
original 
article

rs3129882 DRA4 9 × 10−11 1.30* (48)

DRB6 Brain [6.4 × 10−7; 2.4 × 10−7] [0.52; 0.58] Gtex

Whole blood 2.7 × 10−17 0.45 Gtex

DRB5 Hypothalamus 1.6 × 10−5 −0.44 Gtex

Whole blood 6.6 × 10−9 −0.25 Gtex

DQA2 Whole blood 3.3 × 10−5 0.27 Gtex

C4A Whole blood 3.7 × 10−5 −0.24 Gtex

DQB1-AS1 Whole blood 4.4 × 10−5 −0.16 Gtex

DRB9 Whole blood 1.5 × 10−5 0.22 Gtex

rs660895 DRB1-
DQA1

8 × 10−7 0.80* (87)

DQA1 Whole blood 1.3 × 10−6 −0.18 Gtex

DQA2 Brain [6.0 × 10−17; 1.6 × 10−9] [0.83; 1.1] Gtex

Substantia 
nigra

6.2 × 10−9 0.95 Gtex

DQB1 Brain [6.8 × 10−6; 9.7 × 10−6] [−0.55; −0.65] Gtex

Whole blood 3.3 × 10−12 −0.41 Gtex

DQB1-AS1 Whole blood 2.2 × 10−6 −0.24 Gtex

DQB2 Whole blood 7.9 × 10−13 0.52 Gtex

DRB1 Cortex 5.5 × 10−6 0.58 Gtex

Whole blood 5.3 × 10−14 −0.21 Gtex

DRB6 Brain [7.8 × 10−7; 5.4 × 10−6] [0.59; 0.58] Gtex

Whole blood 5.3 × 10−14 −0.21 Gtex

LY6G5B Whole blood 1.4 × 10−5 −0.12 Gtex

Table continued on following page
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TABLE 2	 SNPs in the HLA Region Associated with PD 
(Continued)

SNP
Allele/
gene Tissue p-value Effect size

Data base/
original 
article

rs2395163 DRA/
BTNL2

3 × 10−11 0.81* (88)

DAQ1 Whole blood 7.8 × 10−6 −.017 Gtex

DQA2 Brain [1.2 × 10−9; 1.2 × 10−6] [0.73; 0.83] Gtex

Whole blood 8.4 × 10−31 0.89 Gtex

DQB1 Whole blood 7.5 × 10−7 −0.30 Gtex

DQB2 Whole blood 1.0 × 10−8 0.43 Gtex

DRB1 Brain [5.4 × 10−7; 3.8 × 10−5] [−0.45; −0.46] Gtex

Whole blood 1.7 × 10−16 −0.23 Gtex

DRB6 Brain [3.6 × 10−5; 5.9 × 10−6] [0.55; 0.57] Gtex

Whole blood 1.2 × 10−10 0.46 Gtex

rs9275326 DQB1 1.19 × 10−12 0.826* (13)

DQA1 Whole blood 3.9 × 10−5 −0.20 Gtex

DQB1 Whole blood 1.4 × 10−7 −0.41 Gtex

DQA2 Brain [2.5 × 10−9; 4.1 × 10−7] [1.0; 1.1] Gtex

Whole blood 1.9 × 10−20 0.96 Gtex

DRB1 Whole blood 6.1 × 10−8 −0.20 Gtex

DRB6 Brain [1.1 × 10−7; 2.1 × 10−5] [0.79; −0.94] Gtex

Whole blood 1.4 × 10−6 0.45 Gtex

TAP2 Whole blood 67 × 10−8 −0.28 Gtex

rs9268515 4 × 10−4 1.25* (53)

rs4248166 DRA/
BTNL2

0.07 1.08* (51)

rs75855844 DRAB5 4 × 10−4 1.25* (13)

Summarized eQTL data from publically available databases (Gtex) for whole blood and brain regions. An asterisk 
(*) denotes values from meta-analyses. p-values were generated for each variant-gene pair by testing the alternative 
hypothesis that the slope of a linear regression model between genotype and expression deviates from 0. The effect size 
of the eQTLs is defined as the slope of the linear regression and is computed as the effect of the alternative allele relative 
to the reference allele in the human genome reference GRCh37/hg19 (i.e., the eQTL effect allele is the alternative allele). 
HLA, human leukocyte antigen; PD, Parkinson’s disease; SNP, single nucleotide polymorphism.
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to be eQTLs, that is, regulating gene transcription. This could provide a functional 
link to the increased expression of MHCII molecules observed in PD brains and 
affect the interaction between antigen-presenting cells and lymphocytes. 

T- and B-lymphocyte development

From the 41 PD-risk loci identified by GWAS (Figure 1), ITPKB, PDLMI2, 
SATB1,  and BST1 are involved in T- or B-lymphocyte development. Inositol 
1,4,5-trisphosphate 3-kinase B (ITPKB) controls positive selection of T-lymphocytes 
and modulates Erk activity, an important kinase that regulates extracellular signal 
response and plays a crucial role in the production of pro-inflammatory cytokines 
and chemokines. Studies in mice have shown that nonsense mutations in ITPKB 
attenuate Erk signaling in T-lymphocytes (54) and that ITPKB-deficiency leads to 
defects in B-lymphocyte survival, developmental alterations of B-lymphocytes, 
and antigen unresponsiveness in vivo (55). PDLIM2 has been reported to inhibit 
T-helper 17 (TH17) cell development through signal transducer and activator of 
transcription 3 (STAT3). PDLIM2 deficiency in mice resulted in the accumulation 
of STAT3 in the nucleus and enhanced the extent of TH17 cell differentiation, 
known to have a pathogenic role in inflammatory diseases (56). SATB1 encodes 
for special AT-rich binding protein 1, a T-lymphocyte-enriched transcription fac-
tor and chromatin organizer essential for controlling a large number of genes 
participating in T-lymphocyte development and activation (57). Moreover, it has 
been observed that mouse SATB1 coordinates the expression of Th2 cytokine 
genes (58). BST1 encodes for the leukocyte surface protein CD157 that is upregu-
lated in bone marrow cells from patients diagnosed with rheumatoid arthritis (59) 
and may facilitate pre-B-lymphocyte growth.

NF-κB and IFNγ-signaling

Four loci reported to be associated with PD relate to the transcription factor 
NF-κB that regulates a number of immune genes in response to different stimuli. 
These loci include MCCC1 and DDRGK1 (12) (Figure 1) as well as RIT2 and 
SCARB2 reported in an earlier GWAS meta-analysis (13). MCCC1 knockdown 
strongly inhibits induction of IFNs and inflammatory cytokines in response to 
viral infection (60). It has also been observed that expression patterns of RIT2 and 
IFNγ are positively correlated in PD brains, indicating that RIT2 may modulate 
IFNγ signaling (61). Depletion of DDRGK1 dramatically inhibits the expression 
of NF-κB target genes, suggesting that DDRGK1 plays an important role in regu-
lating the NF-κB signaling pathway through interaction with IκBα (62). SCARB2 
is a known receptor for GBA and for enterovirus 71 (EV1) and is highly expressed 
in human plasmacytoid dendritic cells where it has been reported to regulate the 
production of type I IFN through TLR9 and IFN regulatory factor 7 (63).

Regulation of inflammation through metabolic pathways

Biallelic mutations in GBA cause Gaucher’s disease, and carriage of one mutated 
GBA allele substantially increases the risk for PD (64). Although GBA muta-
tions are the single largest risk factor for idiopathic PD, the mechanisms behind 
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the risk increment are not fully understood. There are  several immune-related 
effects of GBA deficiency, including multisystem inflammation, B-lymphocyte 
hyperproliferation (65), increased levels of pro-inflammatory cytokines (66), 
microglial activation and astrogliosis (67). Less is known about the role of GPNMB, 
SREBF1, and ACMSD in conferring increased risk for PD. GPNMB encodes for 
glycoprotein nonmetastatic melanoma B and is highly expressed in microglia 
after  LPS treatment. Inhibition by GPNMB siRNA dramatically suppressed the 
expressions of TNF-α, IL-1β, and inducible nitric oxide synthase (iNOS) in 
activated mouse BV2 cells, indicating a role in microglial activation and 
pro-inflammatory cytokine release (68). SREBF1 may regulate innate immune 
responses through its actions on lipid metabolism since it contributes to resolution 
of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism (69). 
ACMSD has a well-described biological function in the kynurenine pathway, 
where it regulates and limits the formation of quinolinic acid. Quinolinic acid is 
an NMDA receptor agonist with excitotoxic properties that can also modulate 
inflammatory responses. ACMSD could therefore reduce inflammation-induced 
neurodegeneration (70).

Innate immune response

PD risk-loci linked to innate immune responses include TLR9, IL1R2, and 
ATP6V0A1. TLR9 is part of the toll-like receptor family and can recognize mito-
chondrial DNA as an endogenous danger-associated molecular pattern (DAMP) 
and activate an inflammatory cascade (71). IL-1 receptor type 2 (IL1R2) acts as a 
decoy receptor for IL1 by competing with IL1R1 for ligands and co-receptors. 
IL1R2 has been implicated in arthritis, endometriosis, organ transplantation, and 
Alzheimer’s disease (72). In vitro, the expression of IL-1R2 is suppressed by pro-
inflammatory agents like LPS and IFN-γ (73). The ATP6V0A1 gene is expressed 
in microglia and their precursors and is involved in the acidification of intracel-
lular compartments and the phagosomal fusion, a process that is crucial for 
phagocytosis (74). In addition to these, many gene variants conferring increased 
risk for PD act, in some way, on the complement system. These include SNCA, 
MAPT, GBA, STK39, LRRK2, HLA, GPNM8, GCH1, DDRGK1, SCARB2, FGF20, 
and SREBF1 (75). 

ENVIRONMENTAL FACTORS AFFECTING IMMUNOGENETICS 
IN PARKINSON’S DISEASE

As mentioned above, the incomplete penetrance of monogenic forms of PD and 
the complex genetic structure of idiopathic PD suggest the presence of environ-
mental components that modify disease risk. The link between inflammation and 
PD genetic risk factors described above is strong, but how immunogenetics inter-
acts with environmental factors is a research field still in development. For exam-
ple, a SNP (rs3129882) in HLA-DRA associated with increased MHCII molecule 
expression has been reported to significantly increase the risk of PD in synergy 
with environmental exposure to pyrethroid (76). The use of nonsteroidal 
anti-inflammatory drugs (NSAIDs) has been suggested to be neuroprotective, 
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with ibuprofen being significantly associated with a reduced risk for PD (77, 78). 
Any interaction between the effect of NSAIDs and genetic risk factors for PD is, 
however, not known.

The gastrointestinal tract has an extensive immune and neuronal network and 
is in direct contact with the external environment. According to the Braak obser-
vations (79), the enteric nervous system is affected by α-synuclein pathology 
before the substantia nigra. It has been proposed that PD pathology actually starts 
in the gut and propagates through the vagus nerve to reach the substantia nigra; 
however, this hypothesis remains under debate (80). Several of the genes linked 
to familial PD or associated with idiopathic PD are also linked to the gastrointes-
tinal tract. As mentioned above, GWAS have identified variants at the LRRK2 
locus which are also known to be associated with Crohn’s disease (26), and FGF20 
has been associated with colitis and has demonstrated therapeutic activity in 
experimental models of intestinal inflammation (81). The overlapping suscepti-
bility between inflammatory bowel disease and PD suggests that inflammatory 
processes in the intestines may promote PD pathology. Patients with PD have also 
been shown to have an altered gut microbiota pattern compared with controls 
(82, 83), and there is emerging evidence that the microbiota can influence the 
development of PD. In α-synuclein-overexpressing mice, microbiota were required 
for α-synuclein pathology, microglial activation, and motor deficits to occur (84). 
In addition, transplantation with microbiota from PD patients, but not from con-
trol subjects, worsened the physical impairment in the α-synuclein-overexpressing 
mice. These findings suggest the microbiome not only as a risk factor for PD but 
also as a potential therapeutic target. How genetic factors contribute to the micro-
biome and its impact on PD risk remains to be determined.

CONCLUSION

Many of the identified gene mutations linked to monogenic PD and common vari-
ants associated with idiopathic PD are involved in immune pathways. There is 
thus increasing evidence that inflammation has a causative role rather than being 
a consequence of neurodegeneration in PD. The involved pathways include both 
innate and adaptive immune responses in the CNS and in the periphery. If the risk 
for PD is, in part, mediated through immune mechanisms, these are obvious tar-
gets for therapeutic intervention. The field of immunogenetics in PD is therefore 
likely to unravel more of the etiology underlying PD, as well as identifying poten-
tial targets for novel treatments. 
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