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Abstract: Parkinson’s disease (PD) is a common neurodegenerative disorder. 
While a number of non-motor manifestations arise, the typical clinical features 
involve a movement disorder consisting of bradykinesia, resting tremor, and rigid-
ity, with postural instability occurring at a later stage. The cause of PD is not 
known, but a number of genetic risk factors have now been characterized, as well 
as several genes which cause rare familial forms of PD. Environmental influences 
such as smoking, caffeine consumption, and pesticide exposure have been postu-
lated to alter the risk of PD development, although the role of these remains 
unclear. The movement disorder arises due to the loss of dopaminergic neurons of 
the substantia nigra pars compacta, with the pathological hallmark being intracel-
lular aggregates of α-synuclein, in the form of Lewy bodies and Lewy neurites. 
Several processes have been implicated in PD, including mitochondrial dysfunc-
tion, defective protein clearance mechanisms, and neuroinflammation, but the 
way in which these factors interact remains incompletely understood.
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INTRODUCTION

Parkinson’s disease (PD) is a complex progressive neurodegenerative disease char-
acterized by tremor, rigidity, and bradykinesia, with postural instability appearing 
in some patients as the disease progresses. It was first described by James Parkinson 
in 1817 and further characterized by Jean-Martin Charcot, and our knowledge of 
PD is continuing to expand. 

PD is the second most common neurodegenerative disease after Alzheimer’s 
disease (AD) (1), with a prevalence of approximately 0.5–1% among those 65–69 
years of age, rising to 1–3% among persons 80 years of age and older (2, 3). With 
an aging population, both the prevalence and incidence of PD are expected to 
increase by more than 30% by 2030 (4), which will result in both direct and indi-
rect costs on both society and the economy as a whole. 

PD is pathologically characterized by the loss of nigrostriatal dopaminergic 
innervation, although neurodegeneration is not limited to only the nigral dopami-
nergic neurons but also involves cells located in other regions of the neural 
network. Such a widespread pathology makes PD a very heterogeneous disorder, 
and a reliable diagnostic test is not yet available. Currently, diagnosis is based on 
clinical symptoms with the criteria for a diagnosis requiring the presence of two 
of the following clinical features: resting tremor, bradykinesia, rigidity and/or pos-
tural instability. Clinical criteria, however, can only lead to a diagnosis of probable 
PD, while a definitive diagnosis requires histopathological assessment, with the 
identification of α-synuclein-containing Lewy bodies (LBs) or Lewy neurites.

Treatment predominantly focuses on symptomatic relief with drugs aiming to 
either restore the level of dopamine in the striatum or to act on striatal post-
synaptic dopamine receptors. However, as dopamine is not the only neurotrans-
mitter involved in PD, many other drugs are also being used to target specific 
symptoms, such as depression or dementia. Yet, further investigation on novel 
therapies to reduce the rate of neurodegeneration or even to replenish the loss of 
dopaminergic cells remains in the research setting, with some in the early stages 
of clinical trials. As our understanding of the pathogenesis of PD increases and 
more is learned about new therapeutic targets, the potential for the development 
of disease-modifying therapies is promising.

CLINICAL FEATURES

The clinical features historically associated with PD are the triad of motor symp-
toms, namely, tremor, rigidity, and bradykinesia, with postural instability often 
appearing as the disease progresses. However, PD is also associated with many 
non-motor symptoms, and these often precede the motor symptoms by years or 
even decades. 

The pre-motor or prodromal phase of PD may start as early as 12–14 years before 
diagnosis (5). There is now a great deal of evidence supporting the fact that the disease 
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may begin in the peripheral autonomic nervous system and/or the olfactory bulb, 
with the pathology then spreading through the central nervous system affecting the 
lower brainstem structures before involving the substantia nigra (6). This may thus 
explain the presence of hyposmia, constipation, and rapid eye movement sleep disor-
ders in PD patients before motor symptoms begin. One study showed that patients 
with tremor, balance problems, depression, constipation, fatigue and urinary dysfunc-
tion at 5 years prior to diagnosis were more likely to develop PD than those without 
these symptoms (7). Additionally, individuals with constipation or tremor have a 
higher risk of developing PD over 10 years of follow-up (7).

There is increasing interest in this prodromal state of PD as it may be an ideal 
time point for therapeutic intervention. Many trials investigating potential 
therapies include patients with early PD, that is, those within 2 years of diagno-
sis, but even at this stage, significant dopaminergic neuron loss has already 
occurred (8)—therefore, it would be optimal for any future disease-modifying 
treatments to be initiated in the prodromal phase.

Clinical diagnosis of PD is based on the presence of bradykinesia in combination 
with a resting tremor or rigidity. Early symptoms generally present asymmetrically, 
with the absence of atypical symptoms (cerebellar signs, early severe autonomic 
dysfunction, vertical supranuclear palsies, or cortical sensory loss), which would be 
indicative of an alternative diagnosis (9). An asymmetric onset of symptoms and a 
good response to levodopa are supportive for a diagnosis of PD and are the two 
most important features to discriminate PD from other forms of Parkinsonism (9).

As the disease progresses, so does the severity of motor and non-motor symptoms. 
PD is a very heterogeneous disease and there have been attempts to subclassify the 
disease further. Although a consensus has yet to be met, one subclassification primar-
ily based on clinical characteristics suggests two subtypes: a tremor dominant PD and 
a non-tremor dominant PD. A patient with tremor dominant PD predominantly lacks 
other motor symptoms and in general responds better to dopamine replacement 
therapy. On the other hand, a patient with a non-tremor dominant PD may have an 
akinetic-rigid syndrome and a postural instability disorder, as well as an increased 
incidence of non-motor features. The course of the disease and prognosis differs (10), 
and it has been postulated that the various subtypes have distinct pathogenesis and 
etiologies (11).

As the disease progresses, motor symptoms worsen over time, with the onset 
of further complications associated with long-term levodopa therapy. These 
include non-motor fluctuations, dyskinesias, and psychosis that are more difficult 
to manage. In an advanced disease stage, both motor and non-motor symptoms 
may become resistant to current medications. Postural instability and freezing of 
gait may lead to falls and fractures, while dementia and hallucinations can develop 
in some patients, which sometimes warrant care home placement.

Non-motor symptoms are common in early PD but also progress and become 
more challenging to manage. Early non-motor symptoms include impaired olfac-
tory ability, autonomic dysfunction, pain, fatigue, sleep disorders, and cognitive and 
psychiatric disturbances. They have a significant impact on the patient’s quality of 
life (12). Autonomic symptoms can be difficult to treat with orthostatic hypotension 
causing significant problems for patients. Urinary incontinence and constipation 
are common, and dementia occurs in 83% of patients with PD after 20 years of 
diagnosis (13). These non-motor symptoms contribute significantly to disability 
and poor quality of life and also strongly predict admission to care homes (14).
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ETIOLOGY

PD is a multifactorial disease, with both genetic and environmental factors playing 
a role. Age is the biggest risk factor for PD, with the median age of onset being 
60 years of age (15). The incidence of the disease rises with age to 93.1 (per 100,000 
person-years) in age groups between 70 and 79 years (16, 17). Additionally, 
there  are cross-cultural variations, with higher prevalence reported in Europe, 
North America, and South America compared with African, Asian and Arabic 
countries (1).

Cigarette smoking

Cigarette smoking has been extensively studied with respect to PD, with mostly 
consistent results. Most of the epidemiological reports are case-control studies 
showing a reduced risk of developing PD, with larger cohort studies also in agree-
ment (18–20). A large meta-analysis including 44 case-control studies and 
8 cohort studies from 20 countries showed an inverse correlation between smok-
ing and PD, with a pooled relative risk of 0.39 for current smokers (21). Two other 
meta-analyses also reported an inverse correlation between smoking and PD, with 
a pooled odds ratio ranging from 0.23 to 0.70, indicating a protective mechanism 
against PD (22, 23). They also reported an inverse correlation between the num-
ber of pack years, the number of years smoking and the risk of PD, with the risk 
of developing PD being significantly reduced in heavy or long-term smokers com-
pared with nonsmokers (23).

The reasons underlying this associated reduced risk are not fully under-
stood. Activation of nicotinic acetylcholine receptors on dopaminergic neurons 
by nicotine or selective agonists has been shown to be neuroprotective in 
experimental models of PD (24, 25). Nevertheless, nicotine can also stimulate 
the release of dopamine, which is involved in the reward mechanisms; it is 
therefore difficult to confirm whether smoking prevents PD or whether PD 
helps prevent the habitual use of cigarettes. As a result of a reduction in dopa-
mine in patients with PD, patients may be less prone to addictive behaviours, 
and thus less likely to smoke. This hypothesis is supported by the fact that 
patients with prodromal PD and PD were able to give up smoking much easier 
than controls, suggesting this association could be due to the decreased respon-
siveness to nicotine (26).

Caffeine

Several studies have investigated the effect of caffeine on the development of PD 
and reported a reduced risk of developing PD among coffee drinkers. Caffeine is 
an adenosine A2A receptor antagonist, which is believed to be protective in PD (27) 
and has been shown to be neuroprotective in a mouse model of PD (28). It has 
been previously reported that there is a 25% risk reduction in developing PD 
among coffee drinkers (14). Two large prospective epidemiological studies 
(27, 29), as well as multiple retrospective studies (30), have also shown a reduced 
risk of developing PD with a relative risk ranging from 0.45 to 0.80 in coffee 
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drinkers versus non-coffee drinkers. A meta-analysis including eight case-control 
studies and five cohort studies also showed a significantly reduced risk of devel-
oping PD in coffee drinkers (RR 0.69) (21). Regular tea drinkers also have been 
reported to have a lower risk of developing PD (29).

As with smoking, the causative role of caffeine in preventing PD remains to 
be established. Furthermore, there were differences noted between studies with 
respect to gender. In two cohort studies (27, 29), there was a strong inverse 
correlation between coffee and the development of PD in men, whereas in 
women this association was weaker. Additionally, in post-menopausal women, 
the effect of caffeine depended on whether the females were taking hormone 
replacement therapy including estrogens. As estrogen competitively inhibits 
caffeine metabolism, interactions between estrogen and caffeine may explain 
in part why PD risk is dependent on hormone replacement therapy in post-
menopausal women (31, 32).

Pesticides, herbicides, and heavy metals

In 1983, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was first discov-
ered to be associated with nigrostriatal degeneration when several people 
developed typical PD signs after injecting themselves with a drug contaminated 
with MPTP. MPTP is metabolized into the neurotoxin, MPP+ (1-methyl-4-
phenylpyridinium), which is a mitochondrial complex-I inhibitor that selectively 
damages dopaminergic cells in the substantia nigra (32, 33). The identification of 
MPTP as a cause of nigral degeneration led to the idea that PD could be caused by 
an environmental toxin. Since then, several studies have shown an association 
between pesticides and PD, with one case-control study showing an increased 
association with professional pesticide exposure in men and late-onset PD (odds 
ratio [OR] 2.2) (34). Paraquat (a herbicide which is structurally very similar to 
MPP+) (35) and rotenone (a pesticide) are also selective complex-I inhibitors and 
induce dopaminergic depletion in animal models of PD (36). The relationship 
between exposure to these chemicals and the risk of developing PD has been 
investigated in other epidemiological studies (37). It has also led to the study of 
surrogate markers, including the association of farming, drinking well water, and 
living in rural areas with PD risk. Welding and heavy metal exposure (e.g., iron, 
copper, lead, aluminum, and zinc) have also been investigated, but the relation-
ship between these and PD remains inconclusive.

Genetics

Although PD is generally an idiopathic disorder, there is a minority of cases 
(10–15%) that report a family history, and about 5% have Mendelian inheri-
tance (38). Furthermore, an individual’s risk of PD is partially the product of as-yet 
poorly defined polygenic risk factors. The genes that have been found to poten-
tially cause PD are assigned a “PARK” name in the order they were identified. To 
date, 23 PARK genes have been linked to PD. Mutations in the PARK genes dem-
onstrate either autosomal dominant (e.g., SCNA, LRRK2, and VPS32) or autosomal 
recessive inheritance (e.g., PRKN, PINK1, and DJ-1) and are summarized in Table 1. 
The involvement of some of these genes has not been conclusively confirmed 
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(PARK5, PARK11, PARK13, PARK18, PARK21, and PARK23), while others are con-
sidered risk factors (PARK3, PARK10, PARK12, PARK16, and PARK22) (39).

The numerically most important genetic risk factors predisposing to PD are 
mutations in GBA1, a gene encoding β-glucocerebrosidase—a lysosomal enzyme 
responsible for the hydrolysis of glucocerebrosides (see Chapter 3) (40). GBA1 
mutations are known to cause Gaucher disease, which is the most common lyso-
somal storage disorder (41). Other genetic risk factors include the major histo-
compatibility complex, class II (HLA-DQB1) (42) and the gene encoding the 
protein tau, MAPT (43), among others.

Autosomal dominant PD

The first type of familial PD caused by a point mutation in the α-synuclein gene 
(SNCA) was discovered in 1997 (44). Four additional point mutations, as well 
as gene duplication or triplication, have now been linked to autosomal dominant 
PD (45–50). However, these mutations are relatively rare. The most frequent 
autosomal dominant monogenic PD is caused by mutations in the gene encoding 
leucine-rich repeat kinase 2 (LRRK2). Six LRRK2 mutations have been confirmed 
as pathogenic (51), the most common of which is p.G2019S, estimated to account 
for 1% of sporadic and 4% of familial PD worldwide (51). More recent genetic 
studies have led to the discovery of additional mutations in other genes respon-
sible for autosomal dominant PD, including VPS35 (Table 1).

Autosomal recessive PD

Autosomal recessive forms of PD typically present with an earlier onset than clas-
sical PD. Three of the PARK-designated genes causing autosomal recessive PD 
have been linked to mitochondrial homeostasis (PRKN, PINK1, and DJ-1). 
Specifically, the proteins PINK1 and parkin (encoded by the PRKN gene) are both 
involved in the same mitochondrial quality control pathway, with PINK1 recruit-
ing parkin to dysfunctional mitochondria and thus initiating mitophagy (52). 
Mutations in PRKN are the most common cause of autosomal recessive familial 
PD, occurring in up to 50% of all early-onset cases (39). Finally, several of the 
autosomal recessive genes have been linked to atypical parkinsonism with vari-
able features (Table 1), including ATP13A2 (PARK9), PLA2G6 (PARK14), FBX07 
(PARK17), and SYNJ1 (PARK20) (53–56).

NEUROPATHOLOGY OF PARKINSON’S DISEASE

Macroscopically, the brain in idiopathic PD is often unremarkable with mild atro-
phy of the frontal cortex and ventricular dilation in some cases. The main dis-
tinctive morphological change in the PD brain is observed in transverse sections 
of the brainstem, where almost all cases present with loss of the darkly pig-
mented area in the substantia nigra pars compacta (SNpc) and locus coeruleus. 
This pigmentation loss directly correlates with the death of dopaminergic (DA) 
neuromelanin-containing neurons in the SNpc and noradrenergic neurons in the 
locus coeruleus (71). Cell death in the SNpc is mostly restricted to a specific 
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group of neuromelanin-containing dopaminergic neurons, namely the A9 neu-
rons, while other neuronal and glial cell types are largely spared (Figure 1). 

Quantitative morphometric studies in postmortem PD brains have calculated 
approximately 30% loss of DA neurons in the SNpc by motor symptom onset, 
adjusting for age (8, 72–75). After the motor symptoms appear, nigral DA neuron 
loss increases up to 60% or higher and strongly correlates with the severity of 
motor features and disease duration (8, 76, 77). The result of this remarkable cell 
loss is the denervation of the nigrostriatal pathway, leading to diminished dopa-
mine levels in the striatum. The reduction of dopaminergic signaling is considered 
responsible for the appearance of the cardinal motor symptoms in PD. Recent 
work has shown that nerve cell death in the SNpc is preceded by the loss of axon 
terminals projecting to the striatum (77). Mechanistically, the early neuron and 
axon terminal loss observed in PD suggests a substantial preclinical stage that 
predates the onset of symptoms by several years. 

Apart from the SNpc, widespread cell loss can be found in several subcortical 
nuclei, including the locus coereleus, the nucleus basalis of Meynert, the dorsal 

Figure 1  Coronal section at the level of the substantia nigra pars compacta (SNpc) in a control 
(A and B) and a PD brain (C and D) stained by hematoxylin and eosin. In both sections, the dark 
brown cells are the neuromelanin-containing dopaminergic (DA) neurons. Dopaminergic cell 
loss is evident in the SNpc of the PD brain. The squared areas in A and C are magnified in 
B and D, respectively, to show a closer view of the darkly pigmented DA neurons.

A B

C D

1 mm 200 µm



Kouli A et al. 11

motor nucleus of the vagus nerve, the pedunculopontine nucleus, the raphe 
nuclei, and also the hypothalamus and the olfactory bulb (76). Multiple non-
dopaminergic neurotransmitter systems are affected, such as the cholinergic, 
adenosinergic, glutamatergic, GABAergic, noradrenergic, serotonergic, and 
histaminergic (78). Degeneration in those systems is thought to account for some 
of the non-motor symptoms of PD that do not respond well to dopamine replace-
ment therapies (79). However, the precise pathological mechanisms underlying 
the non-motor symptoms in PD are still relatively unclear.

Lewy body pathology

Microscopically, the pathological hallmark of PD is the presence of abnormal cyto-
plasmic deposits within neuronal cell bodies which are immunoreactive for the 
protein α-synuclein. These pathological protein aggregates are called Lewy bodies 
(LBs) and are often accompanied by dystrophic neurites (Lewy neurites), which 
are mostly axonal (80) (Figure 2A–2C).

LBs are intracytoplasmic inclusions consisting of a granular and fibrillar core 
with a surrounding halo (Figure 2A and 2B). The size of an LB can vary from 5 to 
30 μm in diameter, and more than one LB can be found inside a single neu-
ron (81). Two LB types have been described in the literature: classical brainstem 

Figure 2  Examples of Lewy-pathology in the SNpc (A–C) and the prefrontal cortex (D) in coronal 
sections of a PD brain. (A) Typical brainstem Lewy body inside a neuromelanin-containing 
DA neuron in routine hematoxylin and eosin histological staining. Lewy neurites are not 
visible in this type of histological preparation. (B) Typical brainstem Lewy body with the 
characteristic halo, visualized by α-synuclein immunohistochemistry, a much more sensitive 
method that can also reveal dystrophic Lewy neurites as seen in (C). (D) Cortical Lewy body, 
less well defined and without a halo.

A B

C D

100 µm

20 µm
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and cortical LBs (Figure 2B and 2D). Morphologically, the main difference is that 
cortical LBs have less distinct outlines, are usually smaller, and lack the halo. In 
the SN, structures that resemble cortical LBs are sometimes called “pale bodies” 
and are considered LB precursors.

The primary structural component of LBs is filamentous α-synuclein (80), a 
protein ubiquitously expressed in the brain. In PD and other synucleinopathies, 
it  acquires an amyloid-like filamentous structure and becomes abnormally 
phosphorylated and aggregated. The halo of an LB is primarily made up of 
α-synuclein (82). Apart from α-synuclein, the molecular components of an LB 
include a number of proteins, such as ubiquitin, tau, parkin, heat shock proteins 
(HSPs), oxidized/nitrated proteins, cytoskeletal proteins (such as neurofilaments, 
MAPs, and tubulin), proteasomal and lysosomal elements, and others (83).

Braak staging

The main staging system of PD pathology was introduced in 2003 by Braak and 
colleagues. This was based on the semiquantitative assessment of LB distribution, 
at postmortem, in a large autopsy series. This work revealed that LB pathology 
spreads rostrocaudally throughout the brain, in a chronologically predictable 
sequence (84). At Braak stages 1 and 2, LB lesions are mainly observed in the 
dorsal motor nucleus (IX/X), the reticular formation, and the anterior olfactory 
nucleus. At these stages, patients are considered asymptomatic or presymptom-
atic, although they may present with some early non-motor features, mainly auto-
nomic (e.g., constipation), olfactory, and sleep-related dysfunctions (85, 86). As 
the disease progresses (Stage 3), the SNpc becomes involved, with LB pathology 
and neuronal loss being observed in melanized neurons. At this stage, the pathol-
ogy also extends to the locus coeruleus and the amygdala, subsequently reaching 
the temporal limbic cortex (transentorhinal region) at Stage 4. During stages 
3 and 4, the typical clinical motor features begin to manifest. Finally, during stages 
5 and 6, the key feature is the involvement of the entire neocortex and high-order 
areas, including the prefrontal cortex and primary sensory and motor areas 
(84, 87). Clinically, this is thought to translate to severe PD with significant gait 
problems and dementia. The Braak hypothesis was later revised to propose that 
α-synuclein-associated pathology may in fact be initiated in nasal and intestinal 
mucosal sites, specifically in the olfactory bulb and the enteric cell plexuses 
(“dual-hit hypothesis”) (88). 

Since its introduction in 2003, the Braak staging system has been a subject of 
controversy. Subsequent studies have shown that a proportion of PD brains do not 
appear to match this pattern (89, 90), while attempts to correlate Braak staging 
with clinical dysfunction were also unsuccessful (91). Another criticism of the 
Braak system is that it is based not on neuronal loss but on the distribution of 
Lewy-related pathology (92). 

α-synuclein and Lewy body distribution outside the brain

Phosphorylated α-synuclein histopathology has also been observed outside 
the brain. Specifically, it is found in the spinal cord and cervical and thoracic 
sympathetic ganglia (93). Furthermore, α-synuclein deposition is observed in 
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several peripheral organs, including the retina, the uterus, the bladder, the 
skin, parts of the cardiovascular system (predominantly in the aorta and heart 
ventricles), and the gastrointestinal system, particularly in the submandibular 
gland, stomach, and the bowels (94, 95). This points to a significant involve-
ment of the peripheral nervous system in PD and raises the question 
of whether α-synuclein pathology originates in the brain or in the periphery. 
An epidemiological study from Denmark has revealed that a full truncal 
vagotomy is associated with a reduced risk of subsequent PD (96), leading to 
recent interest in the possible role of the gut–brain axis in the pathogenesis 
of PD (97).

Interaction of α-synuclein with other proteins

Protein misfolding within particular brain areas is a shared feature among many 
neurodegenerative diseases, such as AD and PD. Therefore, an umbrella term 
often used for these disorders is “proteinopathy.” The type of protein and the 
characteristic distribution of the pathology is the significant attribute that defines 
each proteinopathy. Nevertheless, it is now becoming increasingly clear that 
there is often overlap between the different diseases and an interaction between 
the pathogenic, misfolded forms of proteins (98). One factor contributing to this 
phenomenon might be aging, and it is well established that abnormal protein 
accumulation can occur with age in the absence of neurodegenerative disease (99). 
Accumulating evidence now shows that within the context of PD there is a clear 
cross talk between different aggregated forms of proteins with distinct molecular 
pathways.

One such protein is tau, encoded by the MAPT gene. In pathological situa-
tions, tau can become abnormally hyperphosphorylated forming intracytoplas-
mic inclusions, called neurofibrillary tau tangles (NFTs). These aggregates are 
characteristic of AD, together with amyloid-β plaques. However, abnormal tau 
protein has been linked to PD as well. Specifically, postmortem studies have 
revealed a significant increase of tau hyperphosphorylation at Ser262 and 
Ser396/404 in the striatum of patients with PD and PD dementia (100). Animal 
studies have further added to this by showing that increased α-synuclein expres-
sion can trigger tau hyperphosphorylation both in vitro and in vivo (101, 102). 
Furthermore, genome-wide association studies found a strong link between 
MAPT and the risk of PD (43), and subsequent longitudinal work showed that 
the H1/H1 haplotype of MAPT is a strong predictor of early development of PD 
dementia (103).

Amyloid-β has also been reported to act together with α-synuclein. Cortical 
deposition of α-synuclein has been associated with amyloid-β plaque forma-
tion in a subgroup of PD patients (104). Furthermore, both NFTs and 
amyloid-β senile plaques are widespread at postmortem in some, though not 
all, PD patients who develop cognitive dysfunction and dementia (105–108). 
Current literature seems to suggest that the manifestation of dementia in PD 
may be due to the convergence of both PD and AD pathology in the cor-
tex,  and that a combination of these pathologies is a better correlate of PD 
dementia (107).
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PATHOGENESIS OF PARKINSON’S DISEASE

A number of mechanisms have been implicated in PD pathogenesis, with α -synuclein 
aggregation central to the development of the disease. Multiple other processes are 
thought to be involved, with several studies suggesting that abnormal protein clear-
ance, mitochondrial dysfunction, and neuroinflammation play a role in the onset and 
progression of PD. However, the relationship between these pathways remains unclear.

α-synuclein misfolding and aggregation

Native α-synuclein in the brain is mostly unfolded without a defined tertiary 
structure (109), although in aqueous solutions it can be present in stable tetra-
mers that resist aggregation (110). Upon interaction with negatively charged lip-
ids, such as the phospholipids that make up cell membranes, α-synuclein folds 
into α-helical structures through its N-terminal (111). In PD, α-synuclein adopts 
a β-sheet-rich amyloid-like structure that is prone to aggregate. Indeed, misfolded 
α-synuclein is found within LBs as 5–10 nm long filaments. Several mechanisms 
have been proposed for the conformational changes that lead to abnormal 
α-synuclein aggregation, including serine 129 phosphorylation, ubiquitination, 
and C-terminal truncation (112, 113). Hence, different species of α-synuclein are 
found in the PD brain, including unfolded monomers, soluble oligomers, protofi-
brils, and high molecular weight insoluble fibrils (114). 

Recent studies in rodents indicated that the most neurotoxic α-synuclein 
species is the early oligomeric form, rather than the mature insoluble fibrils 
(115, 116). The increased toxicity of these oligomers, as opposed to the fibrillary 
α-synuclein, was validated in cell-based assays (115). The oligomeric species of 
α-synuclein are capable of “seeding” and accelerating abnormal protein aggrega-
tion and Danzer et al. (2011) proposed that this might be the mechanism underly-
ing the spread of α-synuclein pathology in the brain (117).

Mitochondrial dysfunction

Mitochondrial dysfunction is considered a key element in the pathogenesis of both 
idiopathic and familial PD (118). Early postmortem studies in the SNpc of PD brains 
reported a deficiency of the mitochondrial complex-I, which is a vital component of 
the electron transport chain. These data provided one of the first direct links between 
mitochondrial dysfunction and PD (119). Complex-I deficiency was also found in 
skeletal muscle and platelets of PD patients compared to healthy subjects (120, 121). 
Further evidence arose by the discovery that abuse of the substance MPTP caused 
permanent Parkinsonian symptoms (34), with postmortem examination revealing 
dopaminergic cell loss (122). Follow-up studies showed that MPTP when oxidized 
is taken up by DA neurons and leads to complex-I inhibition (123). Other toxins 
and pesticides that impair mitochondrial complex-I activity, like rotenone and para-
quat, also cause a Parkinsonian phenotype and DA cell loss in animals, and poten-
tially in humans (124). Defects in the mitochondrial complex-I may be crucial in 
driving DA cell death due to energy depletion (118).

Another major clue pointing to the role of mitochondria in PD pathogenesis 
is that many of the known genes that cause familial PD play a role in 
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mitochondrial homeostasis. One example is the involvement of PINK1 and 
parkin (PARK2 and PARK6, respectively), both of which are vital components 
of the pathway that regulates the removal of dysfunctional mitochondria, 
a  process called mitophagy (52). Loss-of-function mutations in either gene 
lead to impaired mitochondrial quality control and cause autosomal recessive 
PD (58, 125).

Finally, α-synuclein by itself is known to interfere with mitochondrial func-
tion. For instance, α-synuclein can interact with the mitochondrial membrane 
and accumulate inside the organelles. This leads to the damage of complex-I activ-
ity, ultimately resulting in mitochondrial dysfunction and increased oxidative 
stress (126, 127). A more recent study reported an interaction between oligomeric 
(but not monomeric or fibrillar) α-synuclein and the mitochondrial receptor 
TOM20 (128). This interaction resulted in impairment of the mitochondrial pro-
tein import machinery, reduced respiration, and led to excessive production of 
reactive oxygen species (ROS). 

Dysfunctional protein clearance systems

There are two central protein clearance systems within cells responsible for the 
removal of dysfunctional proteins: the ubiquitin-proteasome system (UPS) and 
the autophagy-lysosome pathway. The UPS is primarily responsible for breaking 
down abnormal proteins, and it does so by “tagging” them with ubiquitin and 
transporting them to the proteasome for degradation. The autophagy-lysosome 
pathway is divided into three constituents: macroautophagy, microautophagy, and 
chaperone-mediated autophagy (CMA). Briefly, in macroautophagy, intracellular 
components, including cytosolic proteins, are engulfed by the autophagosome, 
which then fuses with the lysosome, leading to the breakdown of its contents. On 
the other hand, in microautophagy, the lysosome alone engulfs and destroys 
cytoplasmic components. CMA is a more selective process, whereby molecular 
chaperones target specific proteins and transport them to the lysosome for degra-
dation (129). Monomeric α-synuclein is generally cleared by both the UPS and 
the autophagy-lysosome pathway (130), and damage in either of their machiner-
ies is implicated in the pathogenesis of PD by contributing to the accumulation of 
defective proteins, in particular soluble misfolded α-synuclein (131, 132).

Ubiquitin-proteasome system

Proteasomal abnormalities are a shared feature among many proteinopathies, 
that is, neurodegenerative diseases characterized by abnormal protein accumula-
tion (133). Evidence of such abnormalities in PD was first provided by postmortem 
studies in the SNpc, where the catalytic activity of the UPS was found substan-
tially reduced compared to healthy brains (134). The same findings were later 
reported in peripheral blood mononuclear cells of PD but not in healthy indi-
viduals (135). Apart from diminished activity, a lower expression of different 
proteasomal components has also been identified in the SNpc of PD brains. 
Specifically, the 20S proteasome α-subunit (136) and other molecules involved 
in the normal function of the UPS, like PA700 and PA28 (proteasome activators), 
are reduced (137). Additional evidence is provided from genetic studies and the 
discovery that two of the PARK genes linked to monogenic PD encode proteins 
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involved in UPS function, namely, parkin (PARK2; E3 ubiquitin ligase) (58, 138) 
and UCH-L1 (PARK5; Ubiquitin C-terminal hydrolase) (59).

Following on from findings in human PD, altered proteasome activity was 
observed in different disease models. Marmosets injected with the toxin MPTP had 
diminished enzyme activity in the UPS, in addition to decreased levels of the 26S 
subunit components (139). In a second set of experiments, the same group showed 
that pharmacological inhibition of the proteasome in wild-type rats leads to dopa-
minergic cell death (140). Similarly, Bedford and colleagues using transgenic mice 
with proteasomal defects (knockout for 26S proteasome regulatory subunit 4) 
showed dopaminergic cell degeneration and observed LB-like inclusions in the 
brain, which however lacked the dense core of classical human LBs, and it is unclear 
whether they contained aggregated α-synuclein (141). Nevertheless, all these stud-
ies show that dysfunction of protein turnover can result in neuronal cell death, thus 
providing a potential pathogenic mechanism for PD.

Autophagy- lysosome system

Similar to findings in the UPS system, numerous lysosomal and autophagy-related 
components are malfunctioning or differentially expressed in PD. In nigral neu-
rons of PD brains, the levels of the autophagosome marker LC3-II were increased, 
suggesting an accumulation of autophagic vacuoles (142, 143). In contrast, vital 
proteins of lysosomal membranes (LAMP1 and LAMP2A), and several molecular 
chaperones from the heat-shock protein family (such as hsc70 and hsp35) were 
found to be decreased at postmortem examination (144, 145). Furthermore, of 
particular note is the discovery of a point mutation in the gene of the lysosomal 
protein ATP13A2 (PARK9), leading to an autosomal recessive atypical Parkinsonian 
syndrome, referred to as Kufor–Rakeb syndrome (63). Point mutations in two 
more PARK genes impair the function of either parkin (PARK2) (58) or PINK1 
(PARK6) (60), both of which are involved in the autophagic turnover of mito-
chondria (52). Additionally, the emergence of GBA1 mutations, which result in 
dysfunction of the lysosome-autophagy system, as a strong genetic risk factor for 
PD adds weight to the idea that this system is important in the development of PD 
(see Chapter 3). These studies lend support to the hypothesis that malfunction in 
the autophagy-lysosome pathway may be contributing to the pathogenesis of PD.

Neuroinflammation

Postmortem brain studies have described microglial and complement activation, 
T-lymphocyte infiltration, and increased concentration of pro-inflammatory cyto-
kines in the SNpc and striatum of PD patients compared to healthy individuals 
(146–149). Furthermore, positron emission tomography (PET) neuroimaging 
with the [11C]-PK11195 radioligand has demonstrated increased microglial acti-
vation early on in PD in the brainstem, basal ganglia, and frontotemporal cortices, 
with added involvement of the parietal and occipital cortices in patients with PD 
dementia, compared to healthy subjects (150, 151).

While initially thought to be a secondary phenomenon, there is now evidence 
that inflammatory responses can by themselves contribute to disease pathogenesis. 
It has been demonstrated in early studies with rodent models of PD 
(6-hydroxydopamine and MPTP) that inhibition of microglial activation with 
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minocycline pre- and post-neurotoxic insult led to a significant attenuation of DA 
cell death in the SNpc, suggesting that microglia-induced inflammatory processes 
may be contributing to the degeneration of these cells (152, 153). There is also a 
plethora of evidence suggesting that α-synuclein can directly trigger microglial acti-
vation and initiate inflammatory processes. For instance, in primary cultures, 
α-synuclein mediates a dose-dependent activation of microglia (154). 

Genetic clues suggesting that immune activation might contribute etiologically 
in PD come from the identification of a strong association between the human leu-
cocyte antigen (HLA) class II region (a key molecule of the immune system) and the 
risk of developing PD (155)—a finding that was later confirmed in genome-wide 
association studies (42). Additionally, extensive epidemiological studies suggest a 
decreased PD risk with regular use of the nonsteroidal anti-inflammatory drug ibu-
profen (156). Finally, recent data showed that in PD patients at diagnosis a more 
‘pro-inflammatory’ immune marker profile in the serum is associated with a faster 
motor symptom progression and more impaired cognitive function (157).

Regardless of whether neuroinflammatory responses are a direct trigger of neu-
rodegeneration in PD or are activated as a response to neuronal damage, it is now 
becoming clear that the engagement of the immune system can initiate a vicious 
cycle, thereby exacerbating neuronal dysfunction. Hence, manipulation of the 
immune system remains a promising topic for disease-modifying therapies.

CONCLUSION

PD is a complex neurodegenerative condition, for which the etiology and patho-
genic mechanisms remain incompletely understood. While a small proportion of 
PD patients have a monogenic cause for their disease, the majority of cases prob-
ably are not associated with a specific genetic abnormality. Instead, it is likely that 
the risk of PD is in part, determined by a combination of polygenic susceptibility 
factors. Environmental influences may also contribute to PD risk, although the 
relationship between the development of the disease and factors such as smoking, 
caffeine, and pesticide exposure continues to be poorly understood. Pathologically, 
the movement disorder occurs due to loss of dopaminergic neurons in the SNpc, 
with a number of other brain regions also being involved. The histopathological 
hallmark of PD are LBs, which predominantly contain aggregated α-synuclein, but 
it is not clear how these may result in neurodegeneration. Understanding these 
pathogenic processes can allow for the identification of novel therapeutic targets, 
and, hopefully, the development of disease-modifying treatments in the future.
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