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Abstract: As cutaneous melanoma is a highly aggressive and drug-resistant cancer, 
there is intense research focusing on developing new, efficient drugs. Nanomedicine 
focuses on developing different groups of nanomaterials for both diagnosis and 
therapy, and this combination of specific diagnosis and therapy is called theranos-
tics. Nanomaterials tailored as delivery vehicles can be nanocapsules, nanorods, 
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nanotubes, nanoshells, and nanocages. All these structures protect the intended 
drug against degradation and enhance its stability. The development and charac-
terization of polymeric nanoparticles, polymeric micelles, liposomes, nanohydro-
gel, dendrimers, inorganic nanoparticles, and hybrid nanocarriers are among the 
delivery vehicles that transport different anticancer agents. Functionalization of 
nanocarriers with specific molecules, such as antibodies, can generate different smart 
nanodrugs for application in cancer therapy and/or diagnosis. Nanotherapeutic 
strategies deal with several shortcomings that comprise of tumor characteristics, 
biological barriers, biocompatibility, and so on. As nanostructures interact with 
various host biomolecules, comprehensive in vitro cellular models call for evalua-
tion of physicochemical properties, dose, and time of action of nanomaterials, 
while in vivo assessments would provide valuable data regarding the level of 
absorption, tissue/organ distribution, and metabolism. The future perspectives in 
nanotechnology applied to cancer overcomes the translational barrier from the 
laboratory to the clinical application to potentially improve conventional theranos-
tic techniques.
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Introduction

Melanoma, the cancer of melanocytes, is the sixth most frequently diagnosed can-
cer in humans and accounts for 80% of skin cancer–related deaths (1). Morbidity 
and mortality indices are highly variable worldwide—being rare in nations of 
Asian and African origin and almost considered epidemic in countries of Caucasian 
predominance (2, 3). When diagnosed early, as a localized cutaneous tumor, mel-
anoma can be surgically removed with a good prognosis (4). Once melanoma 
becomes metastatic, it turns into a more aggressive and difficult to treat malig-
nancy (5). Management of metastatic melanoma is challenging if the tumor 
becomes unresectable or if it recurs shortly after resection (6). In such cases, other 
conventional treatment options including chemotherapy, radiotherapy, targeted 
therapy, and photodynamic and immunotherapy have to be combined with 
surgery (7).

Dacarbazine (DTIC) is the first chemotherapeutic treatment approved by U.S. 
Food and Drug Administration (FDA) for metastatic melanoma (8). Temozolomide, 
a DTIC derivative, has the ability to cross the blood–brain barrier and is a first-line 
therapy for brain metastases (9). Recently, BRAF inhibitors (Vemurafenib, 
Dabrafenib) and MEK inhibitor (Trametinib) have been approved by the FDA for 
treating BRAF-mutated melanoma which is nearly found in 50% of cases (2). 
Immunotherapy is another promising treatment option in metastatic melanoma. 
Ipilimumab, an anti-cytotoxic T-lymphocyte antigen 4 antibody (CTLA-4), and 
nivolumab and pembrolizumab, programmed death receptor 1 (PD-1) inhibitors,  
have been approved for use in the treatment of metastatic melanoma (10, 11). 
However, despite these recent therapeutic breakthroughs, there are still some 
drawbacks including undesirable side effects, tumor chemoresistance, or even 
disease relapse (2, 12). As cutaneous melanoma is a highly aggressive cancer (13), 
there is intense research focus on developing new, efficient drugs. Taken together, 
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these challenges have led researchers to explore new ways of early diagnosis and 
investigate novel approaches of drug delivery to reach high efficacy, minimal tox-
icity, and less failure—advantages that melanoma-related nanotechnology could 
potentially offer (14, 15).

Nanomedicine for Melanoma Detection and Treatment

Early diagnosis of melanoma is essential to increase patients’ survival rates. The 
10-year survival rate for Stage IA is 93%, while patients diagnosed at Stage IV 
have a 10-year survival rate of 10–15% only (16–18). Moreover, the cost of treat-
ing melanoma increases dramatically with later stages of the disease (19–21). In 
addition to the clinical and histological examination, many new techniques have 
been utilized to aid early detection of melanoma. These techniques include der-
moscopy, total body photography, multispectral digital imaging analysis, and 
RNA microarray (22, 23). In-depth investigations of the molecular changes of 
metastatic melanoma have paved the way for more advanced technologies 
known as molecular diagnostics. They include fluorescent in situ hybridization 
(FISH), next-generation sequencing (NGS), quantitative reverse transcription-
polymerase chain reaction (qRT-PCR), comparative genome hybridization 
(CGH), and detection of exosomes (24–27). Nanotechnology is one of the prom-
ising tools recently used for detection of melanoma with high sensitivity and 
specificity (28–30).

Nanoparticle quantum dots (QDs), fluorescent nanoparticles characterized by 
excellent brightness, narrow field of emissions, broad absorption spectrum, and 
excellent photostability, have been suggested as a useful technique for cancer 
detection (31–35). Those photophysical properties allowed researchers to conju-
gate QDs with variable cancer-specific molecules as folic acid or antibodies against 
specific cancer antigens (36–40). When QDs are conjugated with specific anti-
melanoma antibodies (e.g., HMB45, MART-1, and Tyrosinase), melanoma cells 
can be distinguished from normal melanocytes (41). However, the heavy metal 
composition of QDs, with its high toxicity and immunogenicity, hinders the wide 
application of QDs as an imaging modality for cancer (42, 43). Recently, coating 
QDs with a polyethylene glycol (PEG) have been shown to decrease cytotoxicity 
(44). Similarly, Cornell dots known as C-Dots are PEG-coated silica-based 
nanoparticles that are used as probes to guide sentinel lymph node biopsy (SLNB) 
(45, 46). These FDA-approved nanoparticles are used as PET-optical or optical 
probes that particularly target RGD peptides attached to alpha 2 beta 3 integrin 
overexpressed in melanoma cells (47–50). Nanotechnology has been used in med-
icine for developing nanometer scale materials, ranging from 1 to 100 nm, having 
therapeutic and diagnostic purposes (51–53). Nanomaterials’ size range matches 
cellular organelles, other molecules involved in intracellular events, as signaling 
pathways, and/or molecules involved in cell to cell communication (16, 20). The 
nanomaterials bio-distribution is dependent on the surface charge, biodegradabil-
ity, size, their distinct biological properties, and shape (19, 21–25). Nanoparticles 
(NPs) or nanocapsules are the most common shape for nanomaterials used as 
drug delivery systems. Moreover, this shape offers protection against degradation, 
enhances its stability, driving an efficient accumulation at target sites (26). 
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Currently, nanorods, nanotubes, nanoshells, and nanocages are nanomaterials 
with imaging and cancer therapy applications (26, 27).

Carbon-based nanoparticles are effective in melanoma cells (53). Thus, a 
single-walled carbon nanotube loaded with DOX-induced melanoma cell death 
in a dose-dependent manner in vitro and revoked tumor development in a 
xenograft melanoma model. Gold nanoparticles (GNPs) are known as nontoxic, 
highly stable, easy to synthesize, and minimally interfering with the biological 
profile of melanoma tumor cell (54, 55). Being of high atomic number and 
electron density, GNPs are optimal contrast agents for computed tomography 
(CT) (56, 57). When labeled with radioisotope indium-111 and conjugated 
with RGD ligands, GNPs were successfully used as radiotracers in experimental 
melanoma models (58). Meir et al. have shown in melanoma-bearing mice that 
labeled GNPs can track tumor-specific T-cells using whole body CT. This 
approach is a next-generation imaging technique as well as a new tool in immu-
notherapy (59).

Magnetic nanoparticles (MNPs) were successfully used in MRI (60). In the 
recent MELAMAG clinical trial, SLNB detection based on MNPs was compared 
to the standard technique. In this study, MNPs with small iron nanoparticles 
(named Sienna+ by the developers) were intradermally injected and a hand-held 
magnetometer was used intraoperatively to detect the accumulation of MNPs. 
A gamma probe was used as comparator and the results showed the feasibility of 
the magnetic technique for SLNB detection. The highest identification was 
proven for inguinal and axillary lymph nodes, while the lowest detection 
rates were registered for the cervical region. From 129 recruited patients, the 
study reported 95.3% rate of sentinel node identification using this MNPs-based 
technique (60).

Another nanoparticle tested for contrast-enhanced MRI lymphography 
is Gadolinium-loaded nanoparticles (Gd-FVT). Using these NPs, the specificity 
and sensitivity of MRI lymphography in melanoma-bearing mice could be 
enhanced (61).

Zhou et al. developed an efficient and noninvasive strategy to detect mela-
noma metastasis in LN using Gd-embedded iron oxide nanoplates (GdIOP), 
functionalized with Zwitterionic Dopamine Sulfonate (ZDS) molecules. With 
T1-T2 dual-modal MRI, GdIOP@ZDS nanoparticles were highly taken up by 
dendritic cells and macrophages in LN, in contrast to melanoma B16 tumor cells 
which showed lower uptake. This generated difference represented pseudo-
contrast images which can be potentially used for detection of melanoma metas-
tasis in LN (62).

RGD-targeted nanoparticles of iron oxide (NPIO) were previously utilized for 
MRI of in vivo tumor angiogenesis with variable limitations including long blood 
half-life and nonspecific extravasation (63). Nevertheless, conjugation of cyclic 
RGD variant [c (RGDyK)], with enhanced affinity for αvβ3, a specific marker of 
angiogenesis, to iron oxide microparticles (MPIO) provided a more sensitive 
molecular MRI approach (64).

Another promising application of nanotechnology is the detection and quan-
tification of circulating tumor cells (CTCs) as a blood-based biomarker “liquid 
biopsy” (65). Seenivasan et al. immobilized anti-Melanocortin 1 receptor anti-
bodies (MC1R-Abs) on amino-functionalized silica nanoparticles (n-SiNPs)-
polypyrrole (PPy) nanocomposite thin film and used them as an immune sensor 
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for selective and sensitive detection of melanoma cells (66). A magnetite 
nanoparticle designed by Sato et al. by conjugating N-propionyl-cyst aminyl 
phenol with magnetite was used in a B16F1 xenograft mouse model (67). Souza 
et al. showed that melanoma cells were degraded after the application of an 
external irregular magnetic field to increase the temperature in the tumor to 
43°C. The nanoparticle had a 1.7- to 5.4-fold greater effect compared with mag-
netite alone (46).

Nano Therapies: Radiotherapy and Chemotherapy

NPs in the context of radiotherapy and chemotherapy are particularly interesting. 
Radiotherapy and surgery are local treatments, while the main systemic strategy is 
chemotherapy, especially considering the risk of metastasis (30). Radiotherapy 
has a limited role in treating melanoma patients and is used selectively. Its success 
is limited due to radiation resistance in melanoma cells (16, 34). This technique 
has been improved by engineering, physics, chemistry, and biology to promote 
innovative technologies that allow real-time imaging and better dose distribution 
according to disease progress (67).

In general, the radioisotopes used in medicine emit energy that produces DNA 
cleavage, damage that is induced mainly by ionized atoms and free radicals. The 
clearance performed by the kidney is dependent on the size of the radioisotopes. 
Molecules smaller than 5 nm are excreted rapidly and fail in promoting desirable 
effects due to short circulation time in blood. Immune response, including opso-
nization, is another way for radioisotopes clearance by mononuclear phagocytes 
(MPS). In this context, nanocarriers emerge as an alternative for the half-life 
increment of radioisotopes (67). Glutathione-coated gold nanostructures repre-
sents the next generation of radiosensitizers used for gamma-ray irradiation 
(34, 68). Moreover, PEGylation of NPs produces nanocarriers that prevent opso-
nization, increasing the half-life of the radioisotopes (69). Carbon nanostructures 
have also been related as potential nanocarriers used in radiotherapy, displaying 
particular physicochemical properties (70) as ultralight, conductivity, and high-
surface area (71).

POLYMERIC NANOPARTICLES

Polymeric nanoparticles (PNs) are molecules usually organized with tunable 
size into a dense structure with entangling biodegradable polymers presenting 
thermodynamic stability in an aqueous solvent (72–75). Recently, FDA 
approved three PNs, namely, polylactic acid (PLA), poly (lactic-co-glycolic 
acid) 43 (PLGA), and polycaprolactone (PCL). The hydrophilicity for the 
encapsulation of hydrophilic drugs is one of the deficiencies for the desired 
release of the encapsulated agents (32). Copolymers as polyethylene glycol 
(PEG)ylated have been used to reduce the degradation rate of PN to produce 
PLA-PEG, PLGA-PEG, improving their biocompatibility and modifying its 
amphiphilicity. Furthermore, PEG has been described as a strategy to evade 
immune response (76, 77).
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LIPOSOMES AND NIOSOMES

Liposomes can remain in the blood circulation longer, permitting continued drug 
release with increased precision in tumor-targeting (78–84). They can incorporate 
nucleic acids and other organic or inorganic molecules into their aqueous lumen 
(85–89) and can be used for targeted, controlled drug release (90–96).

Thus, in two melanoma xenograft models, phosphatidylethanolamine liposo-
mal cisplatin was proven to have higher cytotoxicity than classic liposomes or free 
cisplatin, a high concentration of intratumoral drug remaining for 72 h and effi-
ciently delivering 3.6-times more drug compared to the free drug (97–103). 
Niosomes are biodegradable, biocompatible, nontoxic, and nonimmunogenic 
having extensive solubility and flexibility. Niosomes have been confirmed to have 
prolonged circulation, increased drug retention in skin, and enhanced drug 
spreading when topically applied (104–107). Dwivedi et al. proved that encapsu-
lated artemisone which is a 10-amino-artemisinin derivative with antitumor activ-
ity in niosomes exhibited extremely selective cytotoxicity toward the melanoma 
cells but not to the normal skin cells (108).

NANOHYDROGELS

Nanohydrogels are cross-linked hydrophilic soft polymers organized in a 
tridimensional network comprising a large fraction of water (28, 32). The 
nanohydrogels’ cross-linking occurs through hydrophilic–hydrophobic interac-
tions, hydrogen bonds, electrostatic interactions, or covalent bonds. The aque-
ous environment promotes the swelling of nanohydrogels, a characteristic that 
is determined by the degree of the cross-linking and external environment. This 
nanocarrier is promising for multimodality treatment, especially for peptides, 
proteins, and oligonucleotides, because of their hydrophilicity and efficient cell 
uptake. The co-delivery of PTX and DOX drugs in nanogels are possible due to 
the positively charged surface that could load negatively charged proteins (32). 
Functionalized nanohydrogels siRNA delivery systems that target epidermal 
growth factor receptor were tested in an ovarian cancer mouse model in a 
platinum-based therapy (82). Polymersome could be valuable for melanoma 
treatment owing to its benefits, such as robustness, increased drug loading, 
constancy, relatively longer in vivo circulation, and the possibility to design it 
for the delivery of multiple drugs (104). Polymersomes have been used to carry 
DOX for melanoma therapy and established to be specially taken up by mela-
noma cells (109–111).

THERANOSTIC NANOMEDICINE AND MELANOMA THERAPY

By using nanoparticles for both diagnosis and treatment, theranostic nanomedi-
cine has been advanced recently (112, 113). Liposomes, exosomes, polymer-
somes, nanocrystals, nanotubes, and nanowires are among the commonly used 
nanoparticles and nanodevices, and endless combinations can be created with 
these nanostructures (114). Some metals, such as gold (Au) and Gadolinium 
(Gd), can have antitumor activity besides being an imaging tracer (88). Gd-based 
NPs (AGuIX) were successfully used as both MRI contrast agent and therapy in 
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experimental animal models of melanoma metastases (115–120). Another novel 
theranostic nanostructure for melanoma was a NP biodegradable photolumines-
cent polymer—poly (lactic acid) (BPLP-PLA) loaded with anti-BRAF V600E–
specific drug (PLX4032) and muramyl peptide. The new immune-cell-mediated 
nanoparticle offers high hopes for melanoma imaging and treatment (121–126).

Current Limitations and Exploring Possibilities for Improving 
the Efficiency of Nanodrugs in Melanoma

Although notable progress has been made in the synthesis and characterization of 
nanodrugs, and we are witnessing the first clinical trials that have shown promise 
(127–130), there are still limitations that should be overcome. Thus, nanodrugs, 
once having entered the biological system, complexly interact with the host’s 
immune system, leading to premature clearance, side-effect activation, and toxic-
ity (131–135). Consequently, the main limitations of nanodrug efficacy are the 
immunological interactions, the biological barriers that hinder the availability of 
nanodrugs to the intended target, and the heterogeneity of the biological target 
(38, 136).

In order to improve their efficacy, nanodrugs should overcome these major 
limitations and several means of overcoming them are further described in this 
subsection. An overview of the main issues discussed in this chapter is presented 
in Figure 1.

NANODRUGS’ ACTION IS LIMITED BY THE INTERACTION WITH 
THE BIOLOGICAL SYSTEM

There are complex interactions of nanodrugs once introduced in a biological sys-
tem, because they would interact with cellular and humoral constituents of the 
immune system. Thus, the transition to routine clinical application of these 

Figure 1  Main limitations of nanodrug efficiency in antitumoral therapy and possibilities to 
overcome the limitations.
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nanocompounds would be hampered first by different biological barriers and sec-
ond by their uncertain fate at the diseased site (136, 137).

In the biological system, nanomaterials interact with all the encountered bio-
molecules and dynamically form the so called “bio-corona.” The commonly agreed 
definition of the bio-corona is the multitude and the variety of biomolecules (e.g., 
proteins, peptides, and lipids) that associate with the surface of a nanoparticle 
when introduced in a biological system. The process of entrapping nanoparticles 
within complex surface biomolecules bequeaths them with properties that can 
hinder the actual intended properties of the nanodrug. Undeniably, the bio-corona 
establishment controls the nanodrug efficacy and further focuses the actions of 
natural and adaptive immunity (138). It is not surprising that nanomaterials are 
directly interacting with the immune system. The evolvement of human immune 
system was accomplished through exposure to different chemical, physical, and 
biological agents (139). As NPs are in the size range of biological aggressors, inter-
actions with the immune system are more likely to occur. Thus, a major limitation 
in nanomedicine is the correct evaluation of the fate of the nanodrugs as antitu-
moral effectors within a biological system (140–146). As nanomaterials match 
the same size range as biomolecules and cellular structures endows them with the 
propensity to reach intracellular structures previously accessible only to biological 
aggressors. Alternatively, as they have already encountered the complex biological 
milieu and interacted with other biomolecules, they are subjected to intracellular 
pathways that are not the intended targets. Hence in vitro investigation of the bio-
corona dynamics should be performed to be assured that within the biological 
system the nanodrugs will reach their intended cellular target (129).

Taking advantage of phagocytes’ capacity to engulf NPs, recently, a novel drug 
delivery system was reported using macrophages as both carriers and effector cells 
upon melanoma cells. Hence, nanoparticles of biodegradable photoluminescent 
poly (lactic acid) were loaded with a drug specific for anti-BRAF V600E mutant 
melanoma forming a complex engulfed further by macrophages which would 
directly bind and kill melanoma tumor cells (147–150).

Conclusion

Novel treatment methods should have several properties. For example, they 
should be more effective, cheaper, and without any risk to patient life, even if 
they do not improve patient’s quality of life. To accomplish patient safety, and for 
good patient compliance, an ideal treatment should be developed with an 
improved overall treatment efficiency, a very low possible toxicity, and a specific 
targeted site (91). Nanotechnology-based formulations can provide all of the 
above, and their efficacy can be further improved  when ornamented with tar-
geting moieties, for instance, specific antibodies (92) or targeted delivery pay-
load (93–95). In the last 5 years, there has been an exponential increase in the 
focus on nanotechnology with regard to melanoma therapy and related diagno-
sis (96). Nanomedicine is a new area that develops nanotechnology for thera-
peutic and diagnostic purposes. Nowadays, different groups of nanomaterials 
have been designed for drug delivery and/or for identifying specific markers. 
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Nanomaterials as delivery vehicles can be nanocapsules, nanorods, nanotubes, 
nanoshells, and nanocages—structures that protect the drug against degradation, 
thereby enhancing its stability. The development and characterization of PNs, 
polymeric micelles, liposomes, nanohydrogel, dendrimers, inorganic nanoparti-
cles, and hybrid nanocarriers are among the delivery vehicles that transport 
different anticancer agents. Chemical drugs, nucleic acids, proteins, antibodies, 
and functionalization of nanocarriers with inorganic compounds such as mag-
netic, graphene oxide, carbon, silica, gold and QDs in a core-shell system can 
generate smart nanodrugs for application in cancer therapy and/or diagnosis. In 
therapy for skin melanoma, as well as for other tumors, nanotherapeutic strate-
gies deal with several shortcomings that comprise of tumor characteristics, bio-
logical barriers, and biocompatibility. Toxicological profile of nanoparticles 
should be robustly assessed. When systemically administered, nanostructures 
interact with various host biomolecules, and may trigger toxicity (151, 152). 
Therefore, comprehensive in vitro cellular models call for evaluation of physi-
cochemical properties, dose, and time of action of nanomaterials, while in vivo 
assessments would provide valuable data regarding level of absorption, tissue/
organ distribution, and metabolism (153). Although preclinical investigations 
are essential for assessing the potential health risks of nanostructures, animal 
models retain significant limitations and the human system may react differ-
ently to a certain drug compared to animal models (154). Last but not least, the 
translation of nanodrugs from preclinical to clinical stage is a major issue still 
unsettled in melanoma nanomedicine area. The future perspectives in nanotech-
nology applied to cancer is very promising in improving cancer management.
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