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Abstract: It is suspected that the development of multiple sclerosis (MS) can be 
affected by oxidative stress (OS). In the acute phase of the disease, OS is respon-
sible for initiating inflammation, whereas in the chronic phase it sustains neuro-
degenerative process. Redox processes in MS are related to dysregulation of axonal 
bioenergetics, cerebral iron accumulation, mitochondrial dysfunction, impaired 
oxidant/antioxidant balance, and OS memory. This chapter gives an overview of 
the role of OS in MS.
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Introduction

Multiple sclerosis (MS) is a multifactorial disease of the central nervous system 
(CNS), characterized by inflammation, demyelination, and axonal loss. MS is con-
sidered a biphasic disease with inflammatory relapsing-remitting (RR) and degen-
erative secondary progressive (SP) phases (1). The ultimate causative factors of 
these processes remain unknown. Emerging evidence suggests a role for oxidative 
stress (OS) in demyelination (1–3). This chapter summarizes the role of OS in the 
pathology of MS and the potential of oxidant scavengers as therapeutics for the 
treatment of MS.

Mechanisms of OS

An imbalance between the production of free radicals and the antioxidative 
defense leads to OS and nitrosative stress (4, 5). Free radicals are defined as 
unstable, short-lived, and highly reactive molecules - containing one or more 
unpaired electrons in the valence shell or the outer orbit.

As a result of the high reactivity, free radicals can abstract electrons from other 
molecules which lose their electron and the molecule becomes a free radical 
itself, initiating a chain reaction cascade which finally damages the living cell (4). 
Free radicals, that is, the reactive oxygen species (ROS) and reactive nitrogen 
species (RNS), may have an influence on crucial classes of biological molecules, 
which results in multiple lipid and protein damage due to peroxidation and 
nitration processes (4, 6). ROS and/or RNS are involved in many essential physi-
ological functions such as immune regulation (i.e., defense against pathogens), 
mitogenic response, cellular signaling, and redox regulation (4, 7). Both ROS and 
RNS can be grouped into two subgroups: radicals and nonradicals (4, 8) 
(Figure 1). Superoxide radical, hydrogen peroxide, hydroxyl radical anion, nitric 
oxide (NO), and peroxynitrite are thought to be involved in the development of 
MS (8, 9). The superoxide radical exists in two forms: superoxide and hydroper-
oxyl radical anion. It is mostly produced in the mitochondria. Under physiologi-
cal pH, superoxide is the most common ROS that reduces iron complexes such 
as cytochrome c and ferric ethylene diaminetetraacetic acid, and oxidizes ascor-
bic acid and tocopherol (4). The hydroperoxyl radical can easily enter the phos-
pholipid bilayer of cell membranes (4).

The enzymes that can produce superoxide include xanthine oxidase (10), 
lipoxygenase, cyclooxygenase (11), and nicotinamide adenine dinucleotide 
phosphate (NADPH)-dependent oxidase (12). Hydrogen peroxide is formed 
in vivo in a dismutation reaction catalyzed by superoxide dismutase (SOD). It 
can cross biological membranes and damage DNA by forming hydroxyl radical, 
which can react with organic and inorganic molecules (13). It is formed during 
the Fenton reaction, between hydrogen peroxide and metal ions (Fe or Cu). 
It is often bound to ferritin and ceruloplasmin or other molecules. Under stress 
conditions, the superoxide anion radical releases free iron from ferritin. 
The released free iron participates in the Fenton reaction to form the hydroxyl 
radical (4).



Adamczyk B et al. 157

Nitric oxide is produced by nitric oxide synthases (NOSs). NOS isoforms 
include neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS 
(iNOS). NO is a crucial intracellular second messenger involved in many biologi-
cal activities such as blood pressure regulation, smooth muscle relaxation, neuro-
transmission, cellular defense, and immune regulation (4). Peroxynitrite, which is 
a very toxic compound, is formed during the reaction between superoxide radical 
and NO (nitrogen monoxide) (14), with subsequent new reactive compounds 
(nitroso-peroxo-carboxylate or peroxynitrous acid) leading to oxidation of lipids, 
proteins (methionine and tyrosine), and DNA (15).

The Mitochondrial Dysfunction Theory in MS

Mitochondria play a significant role in synthesizing adenosine triphosphate and 
providing energy to the cells. They possess their own DNA and are genetically 
independent organelles. Moreover, they are involved in apoptosis and metabo-
lism of fatty acids (16–18). An oxidative energy metabolism is required for the 
lifespan of neurons while the large amount of adenosine triphosphate is pro-
duced during oxidative phosphorylation. In this reaction, the greatest amount of 

Figure 1  Reactive oxygen species (ROS) and reactive nitrogen species (RNS) (5, 9–11). The 
classification of ROS and RNS depended on having an unpaired electron. Nonradial species 
exists without an unpaired electron.
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harmful ROS and RNS is formed. In the case of the disturbed mitochondrial 
antioxidant production, the following are observed: decreased adenosine tri-
phosphate synthesis, impaired Ca2+, and elevated ROS and RNS (16, 19). 
Mitochondrial dysfunction plays a particular role in inflammatory processes. In 
the case of mitochondrial dysfunction, an overproduction of toxic ROS and RNS 
is observed (20). It plays a pivotal function in myelin and oligodendrocyte loss 
which is detrimental to neurons and glia (14, 21). Mitochondrial disturbances 
cause many neurodegenerative processes, including DNA damage, insufficient 
mitochondrial enzyme activity, abnormal mitochondrial gene expression, and 
defective DNA repair mechanism (22). As a result, mitochondrial damage in MS 
was considered to play an important role in disease progression (23, 24).OS 
leads to mitochondrial damage, thus disrupting transport of adenosine triphos-
phate along axons, resulting in neurodegeneration (25–27). Faulty mitochon-
drial DNA was reported as the consequence of oxidative and nitrosative 
stress  (28). It was found that peroxynitrite, superoxide, and NO can destroy 
mitochondria in experimental autoimmune encephalomyelitis (EAE) and inhibit 
aconitase, creatine kinase, manganese, and SOD. These reactions lead to increased 
mitochondrial proton permeability, damage to mitochondrial DNA, and lipid 
peroxidation (29). In addition, recent findings in EAE suggest that mitochondrial 
dysfunction occurs in the early stage of MS (30). Interestingly, mitochondrial 
damage seems to develop before the inflammatory process in the disease (31). 
Mitochondria have a variety of antioxidant enzymes, including antioxidants 
peroxiredoxin-3 and thioredoxin-2 as well as their regulator PGC-1α. Increased 
astrocytic PGC-1α in active MS lesions might be an endogenous protective mech-
anism to reduce oxidative damage. Activation of PGC-1α represents a promising 
therapeutic strategy (32).

Inflammatory Mediators and Antioxidants

New findings suggest that chemokine 11 (CCL11) in the serum and in the cere-
brospinal fluid (CSF) released from activated astrocytes promote OS via microglial 
NOX1 activation and glutamate-mediated neurotoxicity. These findings proposed 
using inhibitor of NOX1 in therapy (33, 34). The modulation of glutamate release 
and transport may also become a new therapeutic target (35). Another study 
explained how tumor necrosis factor-alpha (TNF-α) inhibits the accumulation of 
progenitor cell differentiation. It depends on a number of factors such as increased 
ROS production, altered mitochondrial calcium uptake, mitochondrial mem-
brane potential, and respiratory complex I activity. The accumulation of progeni-
tor cells at the lesion sites is observed in MS patients (36) and suggests that failed 
remyelination is a consequence of the inhibition of differentiation (37). In another 
study, authors presented the possibility of using a TNFR2 agonist as a factor 
protecting microglia against OS (38). Enhanced astrocytic peroxisome proliferator–
activated receptor gamma coactivator1-alpha (PGC-1α) levels reduce the produc-
tion of pro-inflammatory mediators such as IL-6 and chemokine (C-C motif) 
ligand 2, and antioxidant enzymes such as peroxiredoxin-3 and thioredoxin-2, in 
human primary astrocytes. Activation of PGC-1α may be a protective factor for 
neurons (32).
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The results from the study of Andaloussi et al. presented the use of exosomes, 
biologically active nanovesicles (30–120 nm) that can be easily delivered across 
the blood–brain barrier (BBB) (39), to increase remyelination post-injury. They 
stimulated primary dendritic cell cultures with a low level of IFNγ. Exosomes 
(IFNγ-DC-Exos) contain microRNA species which are involved in oligodendro-
cyte development pathways and can increase baseline myelination, reduce OS, and 
improve remyelination. IFNγ-DC-Exos also increased oxidative tolerance, antioxi-
dant levels, and anti-inflammatory miRNAs. Furthermore, IFNγ-DC-Exos, nasally 
administered to animals, increased CNS myelination in vivo (40).

Such therapy may involve supplementation of melatonin which can scavenge 
the hydroxyl, carbonate, alkoxyl, peroxyl, and aryl cation radicals, and stimulate 
the activities of antioxidative enzymes (GPx, SOD, etc.). Oxidative process may 
also be inhibited by NOS (41). It was reported that melatonin (10 mg daily/​
30 days) caused a statistically significant increase in antioxidative enzymes such 
as SOD and GPx and a decrease in malondialdehyde (MDA) in erythrocytes of 
SPMS patients (42). However, the relationship between the Expanded Disability 
Status Scale (EDSS), Gd + and SOD concentration in erythrocytes in clinically 
isolated syndrome (CIS) and RRMS patients is not clear and requires further 
investigation (42, 43). Melatonin also plays an important role in improving the 
antioxidant defense in MS through upregulation of sirtuin1 (SIRT1) and its target 
genes for MnSOD and CAT (44). Moreover, melatonin is selectively taken up by 
mitochondrial membranes, which makes it a potential therapeutic tool in treating 
neurodegenerative disorders (45).

Genetics seems to play a significant role. The GSTP1 polymorphism and qui-
none oxidoreductase 1 (NQO1) variant genotypes in MS patients suggest that a 
defective function of detoxification enzymes could be a determinant of suscepti-
bility and the clinical presentation of the disease (46, 47). α(alpha)-lipoic acid 
(ALA) is a natural, endogenous antioxidant that acts as a peroxisome prolifera-
tor–activated receptor-γ (PPAR-γ) agonist to counteract OS (48, 49). Another data 
provided the first evidence that ALA may increase the production of PPAR-γ in 
vivo in EAE and may reveal antioxidative and immunomodulatory mechanisms 
for the application of ALA in humans with MS (48).

Emami Aleagha et al. indicated that a decreased concentration of Klotho, an 
antiaging protein, in the CSF of patients with RRMS showed a significant negative 
correlation with the EDSS and a positive correlation with total antioxidant capac-
ity (TAC). Klotho concentrations may play an important role in the regulation of 
the redox system (50). Glutathione is an antioxidant in the brain which might be 
a marker of the oxidative line of defense in MS patients and might serve to moni-
tor the disease progression (51). Furthermore, an impaired iron metabolism plays 
a major role in the pathogenesis of MS (4). In the saliva of patients with MS, ferric 
reducing ability (FRA) was reduced by 38% as compared to the control. The same 
study also demonstrated a decrease in the antioxidant status in the serum such as 
TAC (52). A study on 30 female patients showed lower TAC levels and higher 
TOS levels compared with the controls indicating a decreased endogenous anti-
oxidants and increased OS (53). Another study showed that an expression of 
antioxidant power such as plasmatic FRA and thiol group dosage was significantly 
lower in patients with active disease (54).

Ferroxidase (FeOx) activity of ceruloplasmin prevents OS by promoting the 
connection of free radicals from iron ions to transferrin. A reduced serum FeOx 
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activity was noted in 69 RRMS patients and in 62 patients with other inflamma-
tory neurological disorders (55). Serum uric acid (UA) concentrations in 30 MS 
patients and 20 controls with noninflammatory neurological diseases support the 
significance of UA in the pathogenesis of MS. Serum UA concentrations were 
found to be significantly lower in MS patients as compared to the controls (56). 
Recent reports indicated that urine aMT6s levels significantly correlated with MS 
functional composite score but not with the EDSS. These authors believe that 
there might be some new hope in developing a quantitative and objective measure 
to assess the severity of MS (57).

Antioxidants: Enzymatic and Nonenzymatic

Antioxidants, which are divided into enzymatic and nonenzymatic, are substances 
that protect the body against free radicals (Table 1). Among enzymes, the most 
important include catalase (CAT), glutathione peroxidase (GPx), glutathione 
reductase (GR), SOD, serum paraoxonase, arylesterase (53), and δ-aminolevulinate 
dehydratase (δ-ALA-D) (48). SOD has three isoforms, namely, copper/zincSOD 
(SOD-1), manganeseSOD (SOD-2), and extracellular EC-SOD (58). It needs to be 
stressed that in serum, the major antioxidant enzymes that can eliminate the 
hydrogen peroxide include CAT, GPx, and peroxiredoxins (4). Furthermore, glu-
tathione-S-transferases (GSTs) and nitrite reductase NAD(P)H quinone oxidore-
ductase 1 (NQO1) are detoxifying enzymes that prevent cells from oxidative 

Table 1	 The Types of Antioxidants

Enzymes Oxidants (28, 46, 
47, 51, 55)

Nonenzymatic Antioxidants (12)

CAT
GPx
GR
SOD
Paraoxonase
Arylesterase
GSTs
NQO1
Peroxiredoxin-3
Thioredoxin-2, 6
FeOx
δ-ALA-D

Low molecular weight antioxidants Antioxidant elements 

Uric acid
Vitamin C
Vitamin D
Vitamin E
Glutathione
Coenzyme Q
B-carotene
AU

Ions: Cu, Fe, Zn, Mn

The types of antioxidants depend on molecular structure. The table lists the most important barrier antioxidant 
enzymes and other compounds and ions which are not enzymes.

CAT = Catalase, GPx = Glutathione peroxidase, GR = Glutathione reductase, SOD = Superoxide dismutase, 
GSTs = Glutathione-S-transferases, NQO1 = NAD(P)H:quinone oxidoreductase1, FeOx = Ferroxidase, δ-ALA-D = δ 
Aminolevulinate dehydratase, UA = Uric acid.



Adamczyk B et al. 161

damage (46). The concentration of these enzymes in serum may reflect the status 
of an antioxidant line of defense.

Nonenzymatic antioxidants may be classified into low molecular weight and 
antioxidant elements (ions). Low molecular weight antioxidants include UA; vita-
mins C, D, and E; glutathione; coenzyme Q; and b-carotene (9). Other tissue 
antioxidants include ceruloplasmin and ferritin. Iron (Fe), copper (Cu), zinc (Zn), 
and manganese (Mn) are the most important ions with antioxidant properties. 
The general and nonprotein thiol groups represent a nonenzymatic segment of the 
antioxidant defense system (59). The total glutathione and reduced glutathione 
can be assessed in the serum and are substrates for enzymes such as GPx and GR 
(60). UA is a natural nonenzymatic endogenous antioxidant, neutralizing over-
production of peroxynitrite (9).

The Importance of OS in MS

The inflammatory component in the course of MS is significant not only due 
to neuronal and axonal loss but also due to the initiation of the degenerative 
cascade in MS in the early stage (2). The activation of microglia and macro-
phages constitutes a major factor responsible for the production of ROS (8) 
due to high oxygen consumption (2, 4). Microglia activated by T-lymphocytes 
release proteolytic enzymes, cytokines, oxidative products, and free radicals. 
However, microglia also have many protective properties (61), such as neuro-
protection, lowering of inflammatory response, and stimulation of tissue repair 
(62). Neurodegeneration in the course of MS is influenced by two processes, 
namely, OS (63) and excitotoxicity. Pathomechanisms of excitotoxicity are 
associated with glutamate overload (16), calcium overload, ionic channel dys-
function, mitochondriopathy, proteolytic enzyme production, and activation 
of apoptotic pathways.

Interestingly, persistent hyperactivation of oxidative enzymes suggests an “OS 
memory” in chronic neuroinflammation (64). Dysregulation of axonal bioenerget-
ics plays a significant role in OS and axonal injury (27, 65). CSF examination 
during the exacerbation of MS demonstrated a bioenergetic failure related to an 
increased mitochondrial proton leak as well as an increased expression of genes 
that are involved in oxidative damage (66). Furthermore, the presence of pro-
inflammatory cytokines in the CSF and pro-oxidative markers (e.g., nitrotyrosine) 
leads to cytokine-induced synaptic hyperexcitability and also glutamate-​dependent 
neurotoxicity (67, 68). Recently published studies stress the significant role of 
ceramides in the CSF as the signaling molecules causing mitochondrial dysfunc-
tion. Short-chain ceramides stimulate the production of OS and lead to neuronal 
death (69). Cerebral iron accumulation is also significant. This process causes 
chronic cell stress, contributing to axonal and neuronal death (70). The excessive 
accumulation of iron was detected in MS plaques. Extracellular hemoglobin oxi-
dizes and leads to local OS by the globin radical which may be responsible for 
myelin basic protein oxidative cross-linking and heme involved in the peroxida-
tion of lipids (71). Neurodegeneration is related to iron liberation from the myelin 
sheath at the time of demyelination (72). Diffuse neurodegenerative process is 
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connected with high iron concentration in the basal ganglia (73). Ferrous iron 
may intensify oxidative injury in the presence of oxygen radicals (74, 75). 
Mitochondrial injury, OS, and energy failure may be connected to the formation 
of plaques and neurodegeneration in white and gray matter lesions (17, 76). 
Neurodegeneration in the course of MS is related to chronic subclinical extravasa-
tion of hemoglobin into lesions, the dysfunction of various cellular protective 
mechanisms against extracellular hemoglobin reactivity, and OS (77). Another 
study stressed that changes in the oxidant and/or antioxidant balance played a 
role in the pathophysiology of the disease. Attention was paid to the balance 
between the concentration of compounds such as lipid peroxidation levels; car-
bonyl protein content; DNA damage and SOD; CAT activities; vitamins E and C; 
and nonprotein thiol content (78). Also, the presence of free radicals in the ner-
vous tissue may be toxic; for example, peroxynitrite increases the inflammatory 
response, thus leading to such a high concentration in the chronic phase that it 
may result in neurodegeneration (9).

The Impact of Antioxidants on the Course of MS

OS at each stage of MS is a key element in the pathogenesis of the disease. At the 
time of relapse, all these processes are intensified, leading to neuronal loss. Current 
treatment is focused on decreasing inflammation, but not on preventing neurode-
generation. It is possible that a new target of treatment will focus on neutralizing 
free radicals. The course of the disease is affected by the use of antioxidants and 
substances that affect antioxidant pathways that reduce the severity, cause faster 
remission, and result in less pronounced course of neuroinflammation and neuro-
degeneration (79). The process, known as “remote damage,” may have a signifi-
cant effect on neurodegeneration. This process can damage neurons functionally 
related to the primary focus. The therapeutic window that occurs between the 
primary and secondary damage can be used to implement new neuroprotective 
treatment (80).

New Possibilities in the Treatment of MS—Neuroprotection

A number of substances have been tested for a possible ability to protect the brain 
against neurodegeneration; however, the identification of neuroprotective drugs 
has been problematic (2). The limited response to the application of ROS scaven-
gers results from their short half-life, in the order of milliseconds, and the degree of 
instability of ROS (61, 81, 82). Hydralazine may become a potential therapy due to 
the fact that it protects cells from the damaging effects of acrolein (61, 83, 84). The 
following agents could offer help in preventing mitochondrial dysfunction and in 
improving neurodegeneration: CDDO-ethyl amide, CDDO-trifluoroethylamide, 
pioglitazone, rosiglitazone, resveratrol, 5-aminoimidazole-4-carboxamide ribonu-
cleotide (AICAR), and bezafibrate (85).

Other findings suggest that neural stem cells (NSCs) exposed to 125 μM H2O2 
for 30 min, and pretreated with different doses of lovastatin for 48 h, were protected 
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against OS-induced cell death by the expression of PGC-1α, which is a master regu-
lator of mitochondrial function controlling energy metabolism and Nrf2. It is pos-
sible that in the future lovastatin may be used to promote the survival rate of 
NSCs (86). The compounds that can readily cross the BBB include:simvastatin, ator-
vastatin, cerivastatin, pravastatin and rosuvastatin (87). Exendin-4 and GLP-1 have 
been shown to reduce inflammation, demyelination and cytokine release in various 
animal models of MS (88). Most glucagon-like peptide-1 (GLP-1) mimetics such as 
exendin-4, liraglutide, and lixisenatide cross the BBB and show neuroprotective 
effects in many studies. However, further studies are needed to clarify the relation-
ship with OS.

Polymerized form of nano-curcumin (PAP) has been shown to exert anti-
inflammatory and antioxidative effects, and also repair myelin in EAE, a mouse 
model of MS (89). Nontoxic inhibition of myeloperoxidase may restore the BBB 
integrity and limit migration of myeloid cells into the CNS (90). The antioxidant 
protein peroxiredoxin 6 (PRDX6) can reduce the inflammation in the CNS and 
potentiate oligodendrocyte survival (91). 

The Relationship between Immunomodulatory Therapy, 
OS, and Antioxidants

Immunomodulatory therapies protect from relapses whereas corticosteroids 
treat relapses. However, their effect is only partial and further search for new 
therapeutic options is needed. The transcription factor Nrf2 is a key regulator 
of antioxidative defense (92, 93). Oral dimethyl fumarate (DMF) activates anti-
inflammatory and antioxidative pathways to upregulate the expression of this 
molecule (94, 95). A differential expression is involved in the defense against 
OS, predominantly in actively demyelinating white matter lesions (58, 94, 96).

DMF and monomethyl fumarate (MMF) activate Nrf2 transcriptional path-
ways (97). Target genes of Nrf2 include heme oxygenase-1, glutamate cysteine 
ligase transcription factor1, and NAD(P)H oxidoreductase-1. Furthermore, MMF 
impedes the activation and migration of lymphocytes; however, it does not have 
an impact on the function of macrophages. It is a potential novel mode of action 
differentiating this drug from other immune-modifying drugs (98). It was also 
shown that therapies aimed at stimulating endogenous antioxidant pathway, for 
example, the induction of the Nrf2 pathway, may demonstrate positive effects in 
a situation of moderate OS such as the one in the classical EAE models (27). On 
the other hand, they might be counterproductive in the case of extensive oxidative 
injury; it has been proposed that the amplification of oxidative injury in MS is 
only minimal in the studied rodent models (99).

T-cell-secreted IFNγ stimulates OS and demyelination in MS. However, 
induction of physiological levels of IFNγ protects against demyelination and 
OS. Therefore, it is important to apply phasic and pulsed IFNγ to the brain (100). 
Combination therapy with immunomodulatory drugs antioxidants, for example, 
IFN-β and glatiramer acetate, significantly reduced TNF-α; however, it did not 
affect other ROS/NRS biomarkers or disease progression (101). In another study, 
the level of protein carbonyls was elevated in RRMS patients treated with interferon 
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β-1b and glatiramer acetate whereas, serum protein thiol groups were decreased; 
in the absence of immunomodulatory drug, the same markers of OS were signifi-
cantly elevated (102). Sadowska–Bartosz et al. demonstrated an increase in oxidation 
parameters in serum of RRMS patients treated with IFNβ-1a and IFNβ-1b. However, 
this increase was less significant compared with untreated RRMS patients or SPMS 
patients treated with mitoxantrone (103). It should be borne in mind that mitoxan-
trone is associated with an increased level of OS (104). On the other hand, the 
study demonstrated that mitoxantrone did not have an effect on the activity of 
paraoxonase 1 (a type of enzyme that protects cells from OS) (104).

Arnold et al. evaluated the suicidal erythrocyte death induced by mitoxan-
trone. The study showed that mitoxantrone triggered cell apoptosis, partially 
due to the formation of ROS and ceramide, thus increasing OS. In addition, the 
authors assessed the effect of the antioxidant N-acetylcysteine, which signifi-
cantly reduced the effect of mitoxantrone (105). Due to the fact that the studies 
are not conclusive, it appears that treatment with IFN-β and mitoxantrone does 
not reduce OS (103). Another study demonstrated that melatonin supplementa-
tion at a dose of 5 mg over 90 days resulted in a significantly decreased MDA 
concentration in IFN-β and glatiramer acetate–treated groups but not in the 
group treated with mitoxantrone. In turn, a significant increase in SOD activity 
was observed only in the group treated with glatiramer acetate as compared to 
the controls (106).

Interestingly, melatonin may also have implications for the treatment of severe 
MS. One of the studies indicated that the TAC level was significantly lower in the 
mitoxantrone-treated group, and it increased after melatonin supplementation 
(107). Therefore, a combined use of immunomodulatory therapies with antioxi-
dants may prove beneficial. IFN-β and C-phycocyanin, a biliprotein from Spirulina 
platensis with antioxidant, anti-inflammatory, and cytoprotective properties, 
improved the redox status and ameliorated clinical deterioration of mice with EAE 
(108). Fingolimod reduced hyperoxia-induced OS, activation of microglia, and 
associated pro-inflammatory cytokine expression in neonatal oxygen-induced 
brain injury (109).

Attempts were also made to explain some of the beneficial effects of natalizumab 
and its antioxidant capacity. Researchers studied serum melatonin levels in 
18 patients with RRMS treated with natalizumab and noted that it caused significant 
increases in serum melatonin concentrations (87). In one of the studies, 22 MS 
patients were assigned to the treatment with 300 mg of natalizumab. After 14 months, 
it was observed that natalizumab prompted a decrease in oxidative damage bio-
marker levels and induced nuclear translocation of Nrf2, which is responsible for the 
activation of the antioxidant pathway, and a fall in serum vascular cell adhesion 
molecule-1 levels (60). In addition, a decrease in carbonylated protein levels was 
found in patients with the highest levels of severity (EDSS>5) (110).  To conclude, it 
appears that most of the drugs used in MS are directly or indirectly modulate OS.

Corticosteroids in Relapses—The Importance of OS and 
Antioxidants

The role of corticosteroids in OS is poorly understood. Wang et al. examined levels 
of MDA and TAC in peripheral blood and in the CSF of RRMS patients 7 days before 
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methylprednisolone (MP) treatment and 1 month after MP treatment. They found 
that the increase in OS markers precedes inflammatory response in MS patients and 
MP treatment reduces the neuroinflammatory attack by decreasing brain antioxi-
dant enzymes (111). Ozone autohemotherapy is an emerging therapeutic technique 
that can change brain metabolism. It was shown that MS patients demonstrated a 
marked increase in cytochrome-c-oxidase (CYT-c) activity and concentration about 
40 min after autohemotherapy, possibly revealing a reduction of the chronic OS 
level typical of MS patients (112) A protective effect of ozone (O3) therapy was 
reported in EAE in rats either alone or in combination with corticosteroids. Such a 
combination allows to reduce the dose of MP due to a decrease in the level of brain 
glutathione, paraoxonase 1 enzyme activity, brain MDA, TNF-α, IL-1β, IFN-γ, 
Cox-2 immunoreactivity, and p53 proteins (113). The study showed that adding 
compounds that modulate redox pathways in the cell could increase the effective-
ness of the therapy and reduce the dose of corticosteroids.

Conclusion

The role of OS in MS is of great importance as it has a pivotal role throughout 
the duration of the disease. In the acute phase it initiates inflammatory processes 
and in the chronic phase it sustains neurodegeneration. Increased levels of OS 
markers and decreased levels of antioxidant molecules have been observed in 
patients with MS independently of the course of the disease. The use of antioxi-
dants offers hope for a better prognosis, particularly in conjunction with immu-
nomodulatory therapy and corticosteroids. MS patients may benefit from 
antioxidant supplementation.
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