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Abstract:Advances in the understanding of pathogenic mechanisms of diseases 
have led to the defining of new biomarkers for diagnosis, prognosis, and therapy 
response. In this context, flow cytometry has been positioned as one of the most 
useful technologies for monitoring immune-mediated diseases, such as multiple 
sclerosis (MS), allowing a detailed analysis of lymphocyte subpopulations in 
peripheral blood. The autoimmune inflammatory response in MS results in 
changes in lymphocyte subpopulations that might be useful as surrogate markers 
for the evaluation of disease activity, progression, and monitoring of therapy 
response. This chapter discusses the role of T-lymphocyte and B-lymphocyte sub-
populations in MS pathogenesis, the effect of MS treatments on these subsets, and 
their potential usefulness as biomarkers of treatment response.

In: Multiple Sclerosis: Perspectives in Treatment and Pathogenesis. Ian S. Zagon and Patricia J. 
McLaughlin (Editors), Codon Publications, Brisbane, Australia. ISBN: 978-0-9944381-3-3; 
Doi: http://dx.doi.org/10.15586/codon.multiplesclerosis.2017

Copyright: The Authors.

Licence: This open access article is licenced under Creative Commons Attribution 4.0 
International (CC BY-NC 4.0). https://creativecommons.org/licenses/by-nc/4.0/

mailto: emmartinez.germanstrias@gencat.cat
http://dx.doi.org/10.15586/codon.multiplesclerosis.2017.ch9
http://dx.doi.org/10.15586/codon.multiplesclerosis.2017
https://creativecommons.org/licenses/by-nc/4.0/


Immunomonitoring of Lymphocytes Subpopulations in MS Patients140

Key words: Flow cytometry; Immunomonitoring; Lymphocyte subpopulations; 
Multiple sclerosis; Response to treatment

Introduction

There is evidence of patients with the same disease responding differently to the 
same treatment. Thus, it is necessary to define biomarkers to stratify patients, 
monitor the course of the disease, and predict response to treatment. Peripheral 
blood leukocytes play an important role in the pathogenesis of autoimmune 
diseases. It has been demonstrated that immunomodulatory treatments decrease 
the percentage of these cell populations, alter the expression of their surface 
markers, and modify their functionality (i.e., cytokine production, proliferation, 
and induction of apoptosis). For these reasons, it has been hypothesized that 
systematic analyses of peripheral blood immune cells could serve as surrogate 
biomarkers of activity of the disease and/or response to therapy, leading to the 
development of personalized medicine (1–4).

Flow cytometry, a tool for immune-monitoring

Flow cytometry enables the analysis of a panel of surface molecules at single-cell 
level that not only determines the percentages of peripheral lymphocytes but also 
their differentiation stage. In addition, the activation state of peripheral lympho-
cytes and their memory or effector functions can be measured. Recent advances in 
the development of multiparametric flow cytometry have made detailed charac-
terization of lymphocyte subsets possible in whole blood or isolated peripheral 
blood mononuclear cells (PBMC) of healthy donors and patients, and it has been 
presented as a powerful tool for immunomonitoring of response to treatment 
(5, 6). Concurrent to this development, several international consortia have been 
created to standardize immune-monitoring using flow cytometry for immune-
mediated diseases, transplantation, and hematological diseases, for potential use 
in clinical settings (7–9).

Pathogenic Mechanisms of Multiple Sclerosis

Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the 
CNS, characterized by infiltration of T-lymphocytes, B-lymphocytes, macro-
phages, NK cells, demyelination, and axonal damage (10–12). The etiology of 
MS remains unknown; however, it has been proposed that there is a selective 
autoimmune response against myelin autoantigens causing damage to the CNS. 
However, like the majority of autoimmune diseases, the triggers of this response 
are unknown. Both environmental and genetic factors have been postulated. A 
40% concordance in monozygotic twins as well as association with HLA-
DRB1*1501 and DQB1*0602 alleles have been described (11, 13). GWAS stud-
ies in MS patients have shown the involvement of several loci related to the 
immune system, of which the HLA locus presents the highest association 
(14–16).
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The existing evidence on the induction and perpetuation of the disease points 
to an important role of autoreactive CD4+ T-cells (2). Studies in the animal model 
of MS, experimental autoimmune encephalomyelitis (EAE), have shown that the 
effector CD4+ T-subpopulations, Th1 and Th17, play an important role in the 
pathogenesis of the disease. These subpopulations have been found increased in 
the CNS of patients with MS, mainly in CSF and the perivascular space (3, 4). In 
addition, oligoclonal expansions of activated CD8+ T-cells in CNS lesions of MS 
patients have been described, indicating their participation in CNS damage (5, 6). 
The involvement of B-lymphocytes in the pathogenesis of MS is better understood: 
they produce autoantibodies; induce, maintain, and reactivate CD4+ T-cells; act as 
antigen-presenting cells; and produce pro-inflammatory cytokines (7). Impairment 
in the immunoregulatory function of NK cells in MS patients has also been 
decribed (12). A schematic overview of the roles of immune cells in MS pathogen-
esis is represented in Figure 1.

Figure 1  Pathogenic mechanisms of multiple sclerosis. Autoreactive T-cells and B-cells are 
activated in peripheral lymph nodes where they are differentiated into effector cells, CD8+ 
T-cells, and CD4+ T-cells (Th1 and/or Th17). Activated cells migrate through the blood–brain 
barrier (BBB) where they are further activated by local antigen-presenting cells. These 
processes induce cytokine and chemokine production, facilitating the entry of other cell 
types from peripheral blood. At the central nervous system (CNS), macrophages and 
activated T-cells attack myelin components and release cytokines that activate B-cells which 
mature to antibody-producing plasma cells. This increases the inflammatory response and 
causes demyelination and axonal damage.
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Lymphocyte Subpopulations in MS

The autoimmune inflammatory response in MS results in changes in lymphocyte 
subpopulations of peripheral blood (17–20). These changes might be useful sur-
rogate markers for the evaluation of disease activity, progression, and monitoring 
of therapy response.

T-cell subpopulations

T-cell subpopulations can be divided into naïve, central memory, effector mem-
ory, and other minor effector subsets such as terminally differentiated effector 
cells (TEMRA), based on the expression of CD45RA, CCR7, and CD27 (7, 21). 
Studies published until now regarding T-cell subpopulations in MS patients are 
discrepant. Differences among studies might be due to different genetic back-
grounds, stages of the disease, analysis of small groups of patients, and also dif-
ferent monoclonal antibodies used to define T-cell subpopulations. These 
discrepancies are particularly relevant in studies regarding CD8+ T-subpopulations. 
Whereas some authors report an increase of effector CD8+ T-cells (22, 23), other 
authors describe a decrease in effector memory and TEMRA CD8+ T-cells in periph-
eral blood (24). Analysis of the cellularity of the CNS infiltrates show enrichment 
in the number of effector memory and TEMRA CD8+ T-cells in patients with MS 
and other inflammatory neurological diseases (25, 26). In these studies, the 
increase in central memory and effector memory CD8+ T-cells in peripheral 
blood, and in CSF, were related to active disease or early-stage disease. In con-
trast, in patients with less active disease, no changes in central memory CD8+ 
T-cells or the percentages of CD8+ early effector memory in peripheral blood were 
found, although a decrease in absolute counts of CD8+ early effector memory 
T-cells could be observed, which would suggest that in MS patients these cells 
migrate to the CNS (17).

Th17 and Treg subpopulations

The increased percentage of Th17 in the peripheral blood of RRMS patients has 
been widely reported and a pathogenic role for these cells postulated (27, 28). 
Moreover, Th17Th1 cells, a subpopulation which secretes both IL-17 and IFN-γ, 
have also been related to MS pathogenesis (29). Regarding Treg subpopulations, 
most of the reports found a similar percentage of Tregs in MS patients compared 
with healthy donors, although a functional impairment has been found in in vitro 
assays (30–32). In this context, an increase of the Th17/Treg balance has been 
associated with higher disease activity and severity (20, 33).

B-cell subpopulations

Although the involvement of B-lymphocytes in the pathogenesis of MS has been a 
focus in recent years, a full characterization of B-cell subpopulations in peripheral 
blood of MS patients is still lacking (34, 35). Most of the studies on B-cells are 
focused on their changes in response to treatments (36, 37).
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Current Therapies for MS and Their Effect on Lymphocyte 
Subpopulations

Even though a number of new drugs have been developed to treat MS, a treatment 
that can cure the disease has not been developed as yet. Approved treatments 
reduce the frequency of relapses and decrease inflammation but fall short of stop-
ping CNS degeneration. Current treatments can be divided basically into two 
groups: those that treat acute relapses (megadoses of metilprednisolone) and dis-
ease-modifying therapies (DMTs). DMTs include classic injectable drugs 
(interferon-β and glatiramer acetate (GA)), oral substances (fingolimod, terifun-
amide, and dimethyl fumarate (DMF)), and monoclonal antibodies—anti-CD49d 
(natalizumab) and anti-CD52 (alemtuzumab). Other monoclonal antibodies such 
as anti-CD25 (daclizumab) and anti-CD20 (ocrelizumab) that cause depletion of 
B-cells are expected to be in the clinics soon. DMT treatments have broad immune-
modulatory/immunosuppressive effects affecting peripheral blood subpopula-
tions (38–41). The major changes in lymphocyte subpopulations in response to 
DMT treatments are summarized in Table 1.

Interferon a (1a and 1b)

Interferon β (IFN-β) was the first treatment approved for MS. It decreases the 
number of relapses, progression of disability, and disease activity (measured by 
MRI). The mechanism of action of IFN-β, although extensively studied, is not 
fully understood. The known mechanisms include a decrease in lymphocytes acti-
vation and proliferation, a reduction in pro-inflammatory cytokines production, 
and an increase in anti-inflammatory cytokines. IFN-β has a nonspecific immuno-
modulatory effect on various immune cells, and it has been demonstrated that it 
interferes with the transmigration of leukocytes through the blood–brain barrier 
(BBB). This treatment induces a weak leukopenia, an increase of IL-10 that has 
been associated with an increase of both CD4+ and CD8+ T regulatory cells, and 
CD56bright NK cells (42–44). Moreover, some studies described a decrease of IL-17 
production, and Th17 cells, in peripheral blood in MS patients under IFN-β 
treatment (45, 46). It has also been described that the effect of IFN-β causes a 
decrease of activated and memory T-cells (44, 47); on the other hand, it induces 
an increase of B-cells production—an increase in transitional (immature) Bccells 
and k-​deleting recombination excision circles (KRECs), thereby supporting its use 
for increasing B-cell release from bone marrow (17, 48). Its effect on thymic egress 
of recent thymic emigrants (RTEs) is still unclear, but it seems that IFN-β may 
induce a decrease of RTEs and TCR recombination excision circles (TRECs) in 
peripheral blood (48, 49).

GA or copolymer-1

It is a polymer composed of the most frequent aminoacids in the myelin basic 
protein (L-tyrosine, L-glutamate, L-alanine, and L-lysine) (13). Its mechanism of 
action is poorly understood, but it is postulated that GA acts by binding the major 
histocompatibility complex class II molecules, competing with other antigens as 
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myelin basic protein, and inhibiting the activation of myelin basic protein-specific 
T-cells (50, 51). GA has a nonspecific effect on the immune system because no 
specific changes have been described in peripheral blood of patients under treat-
ment. Some studies describe that GA induces a shift in the CD4 T-cells’ response 
to a Th2 profile. Moreover, it has been proposed that it induces an increase in Treg 
subpopulation (50, 52).

Dimethyl fumarate

DMF is an oral drug of the fumaric acid ester. It induces activation of the tran-
scription factors Nfr2 (decreasing inflammation) and NF-κB (modifying cytokines 
production), and diminishes neuroinflammation by promoting the cytoprotection 
of CNS cells against oxidative stress (41). DMF induces a pronounced lymphope-
nia that has been associated with the occurrence of rare and fatal cases of progres-
sive multifocal leukoencephalopathy (PML) associated with JC virus infection 
(53, 54). DMF reduces the number of lymphocytes with a decrease of B-cells and 
CD4+ and CD8+ T-cells. A decrease of central and effector memory T-cells with a 
concomitant expansion of naïve T-cells in peripheral blood of patients under 
treatment with DMF have been reported. Moreover, a shift in T helper (Th) sub-
populations (a decrease in Th1 and Th17, and an increase in Th2 and regulatory 
T-cells) has been reported (55–58). Regarding B-cell subpopulations, an increase 
of a subset of B-cells with regulatory capacity has been described (59).

Teriflunomide

Teriflunomide is an active metabolite of leflunomide, an approved treatment for 
other autoimmune diseases. It inhibits dihydroorotate dehydrogenase, blocking 
the de novo pyrimidine synthesis that is required by rapidly dividing lymphocytes, 
resulting in a reversible cytostatic effect that limits the expansion of stimulated 
T-cells and B-cells. It is administered orally (60–62). Teriflunomide impairs the 
production of activated lymphocytes (inhibiting their proliferation). Specific 
changes in lymphocyte subpopulations have not been reported.

Fingolimod

Fingolimod is the first oral drug approved for MS treatment. It is a structural ana-
logue of sphingosine and its phosphorylated metabolite, sphingosine 1-phosphate 
(S1P). S1P and its receptor (S1P1) mediate the circulation of T-cells and B-cells 
between blood and lymph nodes (LNs). In physiological conditions, the interac-
tion between S1P and S1P1 promotes their egress from LNs by overcoming reten-
tion signals as the chemokine receptor CCR7. Naive and central memory T-cells 
as well as B-cells express CCR7. In contrast, effector memory T-cells and termi-
nally differentiated effector T-cells (TEMRA) are CCR7- and may egress from LNs 
independently of S1P1 receptor. Fingolimod binds to four of the five subtypes of 
S1P receptors, causing the internalization and degradation of these receptors, and 
consequently blocking the egress of CCR7+ lymphocytes from LNs (21, 63, 64). 
The main effect of fingolimod is a decrease of CCR7+ cells in peripheral blood, 
specifically of naïve and central memory T-cells (65–68). In contrast to T-cells, 
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B-cell subsets have not been extensively studied in patients under fingolimod 
treatment. Literature on the effect of fingolimod in naïve and memory subset sub-
populations is scarce and equivocal (69–71). An increase in immature and transi-
tional B-cells (71, 72) and Treg cells has been reported in peripheral blood of MS 
patients under fingolimod treatment (67, 70, 73–76), supporting the conclusion 
that fingolimod can exert an alternative immunomodulatory mechanism inducing 
the production of Treg cells, as previously suggested by in vitro and ex vivo experi-
ments (77–79). Results regarding the effect of fingolimod on Th17 cells are incon-
clusive and contradictory (67, 72, 75, 80). This is probably a consequence of the 
diversity in surface markers used to define this T-cell subset. Specifically, CCR7 
(a  clue marker for cells homing to LNs) can differentiate effector Th17 cells 
(CCR7-) from central memory or pre-Th17 cells (CCR7+). In a longitudinal study 
(72), we detected an increase in the percentages of effector Th17 cells, defined as 
CD4+CCR7-CCR6+CCR4+ following the international consensus of 2008 (21), in 
accordance with other studies (67). In contrast, Mehling et al. observed, in a 
cross-sectional study, that Th17 lymphocytes of MS patients were predominantly 
central memory Th17 and that their percentages were decreased in patients under 
fingolimod treatment compared with untreated MS patients and healthy donors. 
These authors did not analyze the effector Th17 subpopulation (80).

Alemtuzumab

It is a humanized monoclonal antibody against CD52, recently approved for MS 
treatment (previously approved and widely used in the treatment of leukemia). It 
is administered via intravenous route (13, 41). As CD52 is a panleucocitary mol-
ecule, it promotes a rapid, marked, and sustained depletion of T-lymphocytes and 
B-lymphocytes, NK cells, monocytes, and some granulocytes. Studies performed 
in a transgenic mouse model postulated that the mechanism of lymphocyte deple-
tion is predominantly antibody-dependent cytolysis (81). A decrease in the per-
centage of T-cell subpopulations at day 7 posttreatment with the onset of 
reconstitution 1 month after treatment has been described (82). Although CD4+ 
and CD8+ T-cell depletion lasts for months after treatment, there is a selective 
delayed reconstitution of some CD4+ T-cells subsets that remain decreased for up 
to 24 months after treatment (82, 83). In contrast, there is an increase in the per-
centages of Tregs with an increase of suppressive activity. No differences in Th1 
and Th17 percentages have been reported after reconstitution of the CD4+ T-cell 
pool (83).

CD8+ T-cell pool reconstitution is faster than CD4+, normalized at the third 
month after treatment with the dominance of effector subsets (TEMRA) for at least 
24 months (82, 84). These results indicate that T-cell recovery is due to homeo-
static expansion. In contrast to T-cells, the repopulation of CD19+ B-cells reaches 
percentages above baseline in the first 12 months of treatment (85). Interestingly, 
in B-cell reconstitution, there is an output from bone marrow reflected in a signifi-
cant frequency of immature B-cells in the first months after treatment. The B-cell 
pool is dominated by memory B-cells at 12 months after treatment; however, they 
remain below the baseline levels (86). The efficacy of alemtuzumab has been 
found to last longer than the lymphocyte depletion, probably due to the fact that 
after treatment there is a reconstitution with a different lymphocyte repertoire (87). 
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Furthermore, the selectively delayed CD4+ T-cell repopulation can contribute to 
the suppression of the disease activity (82). The main adverse effect of alemtu-
zumab is autoimmunity, the most frequent being thyroid autoimmunity, that 
appears in 30% of patients after treatment (84, 85, 87). The development of auto-
immunity could be explained by the homeostatic expansion that occurs in the 
T-cell pool reconstitution (84).

Natalizumab

Natalizumab is a humanized monoclonal antibody against CD49d (subunit α4 of 
VLA-4 integrin). The strong adhesion between VLA-4 of lymphocytes and 
VCAM-1 of the endothelium is very important for the migration of leucocytes 
through the BBB and entry to the CNS. Natalizumab is administered intrave-
nously, and it binds to CD49d, blocking the transmigration of leucocytes through 
the BBB. This treatment decreases the occurrence of relapses by up to 90%, induc-
ing a decrease of disease progression and MRI activity. The main side effect of 
natalizumab is the risk of developing PML caused by JC virus infection, which is 
associated with high mortality. As natalizumab blocks the transmigration of leu-
kocytes through the BBB, in the peripheral blood of MS patients under treatment 
with natalizumab, there is an increase in the absolute numbers of B, T CD4+, 
T CD8+ (without alterations in CD4/CD8 ratio), and NK cells (88–90). The effect 
of natalizumab on lymphocyte subpopulations is not fully defined, although it has 
been described that memory T-cells would be increased in peripheral blood and 
would induce changes in memory B-cells (90–92). Moreover, natalizumab treat-
ment interferes with the mechanisms of bone marrow egress of hematopoietic 
stem cells, inducing an increase of CD34+ cells in peripheral blood, specifically 
lymphoid progenitors, transitional B-cells, and RTEs (17, 91, 93–97).

Changes in Lymphocyte Subpopulations as Biomarkers of 
Therapy Response

Immunomonitoring of peripheral lymphocyte subpopulations may be useful to 
assess treatment response. In DMF treatment, patients with stable disease had 
lower numbers of CD4+, CD8+ T, and B-cells than those with active disease (98). 
Moreover, percentages of CD8+ T-cells and B-cells at 6 months after treatment 
could predict response to treatment (98). Regarding response to fingolimod treat-
ment, Song et al proposed that percentages of central memory CD4+ T-cells could 
predict relapse (76). In a pilot study, our group described that the baseline per-
centage of RTEs and transitional B-cells are lower in responder patients. Therefore, 
immunomonitoring their percentages could be a tool for predicting which patients 
would be good candidates to receive fingolimod treatment. Moreover, the per-
centage of late effector memory CD4+ T-cells and RTEs could provide information 
on the response to therapy as early as 1 month after starting this therapy (72). 
Using quantitative flow cytometry as a tool for immune-monitoring, a method for 
immunomonitoring CD49d receptor occupancy in MS patients under natali-
zumab therapy has been reported. Using this method, it is possible to determine 
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the percentage of CD49d molecules bound to natalizumab and identify those 
patients with low receptor occupancy (suboptimal doses), which in a long-term 
sustained therapy context would show a decrease in treatment efficacy (99).

Conclusion

DMTs induce changes in lymphocyte subpopulations that can be detected in 
peripheral blood using flow cytometry. Treatment with monoclonal antibodies 
(natalizumab and alemtuzumab), fingolimod, and DMF induces a clear effect on 
different peripheral blood lymphocyte subpopulations. In contrast, IFN-β, GA, 
and teriflunomide produce nonspecific changes. Immunomonitoring lymphocyte 
subpopulations allows to define biomarkers of therapy response and opens up the 
opportunity to initiate a personalized therapy in MS treatments, enabling clini-
cians to choose the best treatment for each patient and predict which patients are 
the most suitable for receiving a specific therapy.
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