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Introduction

Multiple sclerosis is a multifactorial degenerative disease of the central nervous 
system characterized by immune system activation, inflammation, and demye-
lination. The genesis of the inflammatory process and its role in the onset and 
progression of the disease is still under debate, although advances have been 
made over the past decades of scientific research. For instance, it has been 
hypothesized that the central inflammation observed in multiple sclerosis is a 
physiological response secondary to the immune system activation. Different 
subtypes of CD4+ T helper lymphocytes—Th1 and Th17—and cytotoxic 
CD8+ lymphocytes have been shown to trigger neuroinflammation in multiple 
sclerosis (1). These activated lymphocytes migrate to the brain, recall peripheral 
monocytes/macrophages, and ultimately lead to myelin loss and apoptosis and/
or necrosis of mature oligodendrocytes. Resident astrocytes and microglia are 
activated after lymphocytes infiltration. As a consequence, several inflammatory 
mediators like cytokines (chemokines, IL2, IL3, TNFα, IFNγ, and many others) 
are released by these cells in the extracellular compartment where they exert 
cytotoxic activity against oligodendrocytes (2–5).

In some types of multiple sclerosis, the disease seems to develop independently 
of the autoimmune mechanisms, particularity in those disease types—histological 
patterns III and IV—that show no evidence of immune activation at demyelinated 
lesions (6, 7). In these cases, inflammation maybe triggered by primary cytodegen-
eration of neurons and/or oligodendrocytes without the involvement of immune 
cells (8). Regardless of the biological process underlying inflammation, it has been 
consistently shown that inflammation is directly involved in the progression of 
multiple sclerosis (9). In recent years, there has been a growing interest in under-
standing the role of inflammatory mediators derived from the activation of arachi-
donic acid metabolism (e.g., prostaglandins and leukotrienes) in the disease (10). 
Prostaglandins and leukotrienes are abundantly produced in the central nervous 
system of multiple sclerosis patients, contributing to the severity of the disease. 
Therefore, it has been suggested that anti-​inflammatory treatments targeting the 
arachidonic acid pathway, by using nonsteroidal anti-inflammatory drugs 
(NSAIDs), might be beneficial for treating multiple sclerosis.

Activation of the Arachidonic Acid Cascade in Multiple 
Sclerosis

Scientific evidences show that arachidonic acid metabolism is excessively acti-
vated in the central nervous system of multiple sclerosis patients as well as in the 
brain of animals from experimental models of multiple sclerosis. It has been 
hypothesized that arachidonic acid products could play a role in the pathogenic 
mechanisms underlying demyelination, oligodendrocytes loss, and axonal pathol-
ogy that represent common hallmarks of multiple sclerosis. Arachidonic acid is a 
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membrane omega-6 fatty acid molecule released in the cytoplasm by the hydro-
lytic activity of the cytosolic phospholipase A2 (cPLA2) (Figure 1). It has been 
shown that the concentration of several molecules that activate cPLA2, such as 
reactive oxygen species and cytokines, is increased in multiple sclerosis (11–14). 
After being released into the cytoplasm, arachidonic acid is metabolized by the 
activity of cyclooxygenases (COXs) 1 and 2 into prostacyclins, prostaglandins 
(PGs), and thromboxanes (TXs), and by the lipoxygenases (LOXs), 5-LOX, 
12-LOX and/or 15-LOX into leukotrienes (LTs) and lipoxins (LXs). As far as COXs 
are concerned, both isoforms lead to the production of PGE2. COX-1 is constitu-
tively expressed, whereas COX-2 is induced during inflammation and seems to be 
the major source of PGE2 production. Particularly, COX-2 expression appears to 
be induced in oligodendrocytes and immune cells during the processes of demy-
elination (15–17). The proinflammatory PGs and LTs that are upregulated in 
multiple sclerosis represent promising therapeutic targets as suggested by animal 
models of multiple sclerosis.

Arachidonic acid pathway activation in patients 
affected by multiple sclerosis

Arachidonic acid activation has been found in the cerebrospinal fluid and in post-
mortem brain of multiple sclerosis patients (see Table 1 for details of primary 
data). It has been shown that COX-2 is expressed in active demyelinating 
lesions (15), and also in dying oligodendrocytes (16) suggesting a potential role for 

Figure 1  Schematic representation of the arachidonic acid metabolic pathway. 
COX= cyclooxygenase, LOX= lipoxygenase, HPETE= hydroperoxyeicosatetraenoic acid.
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COX-2 in the biological mechanisms underlying the death of oligodendrocytes. 
Moreover, COX-2 is also expressed by inflammatory cells like macrophages and 
microglia that are located at active lesions (17). These data are in line with previ-
ous findings showing that COX-derived prostaglandins are excessively produced 
in the central nervous system of multiple sclerosis patients. The levels of prosta-
glandins PGD2, PGE2, and PGF2, and prostacyclin PGI2, were upregulated in the 
cerebrospinal fluid of patients during relapsing and remitting phases (18–20). 
PGE2 levels were also elevated in lymphocytes extracted from the peripheral blood 
of patients; the highest levels were reached at the onset of the disease or just before 
symptoms, suggesting that PGE2 could be involved in disease initiation (21).

As far as the metabolism of arachidonic acid by LOX enzymes is concerned, 
the levels of LTB4 and LTC4 in the cerebrospinal fluid of multiple sclerosis patients 
were elevated (18, 22). The same authors, in their second publication on the same 
topic, were able to replicate the results for LTB4, but not for LTC4, LTD4, and LTE4 
levels (23). Overall, these data have suggested that, in multiple sclerosis, the 
metabolism of arachidonic acid through 5-LOX enzymatic activity was aug-
mented. In 2010, a study, conducted in postmortem white matter specimens of 
multiple sclerosis patients, identified the 5-LOX gene as a top risk gene for mul-
tiple sclerosis (24).

Arachidonic acid pathway activation in animal models 
of multiple sclerosis

The arachidonic acid metabolic pathway is activated in three different animal mod-
els of multiple sclerosis: the experimental autoimmune encephalomyelitis (EAE), 
the Theiler’s murine encephalomyelitis virus (TMEV), and the cuprizone model (see 
Table 1 for details of primary data). In the EAE model, the upstream enzyme cPLA2 
has been shown to play a key role in the pathogenesis of the disease as cPLA2 
knockout mice and naïve mice treated with a cPLA2 specific inhibitor were both 
resistant to EAE induction (25, 26). Downstream cPLA2, COX-2, inducible PGE2 
synthase, and PGE2 levels were all increased in the brain of EAE mice (27). COX-2 
was expressed in the resident microglia, infiltrating macrophages, and endothelial 
cells of the brain of EAE mice (28–29). Concerning the four receptors of PGE2, 
EP1, EP2, and EP4 were upregulated by one-, two-, and threefold, respectively 
(30). EP2 and EP4 have been implicated in the stimulation of lymphocytes CD4+ 
release and their activation in EAE model (30). Moreover, COX-1 expression and 
PGI2 levels were upregulated in the brain of EAE mice, whereas the concentration 
of PGD2 was downregulated, and the concentration of PGF2α was unchanged (27). 
However, one study conducted in a chronic relapsing type of EAE showed conflict-
ing findings. While the increase of COX-1, COX-2, and PGE2 was confirmed, the 
PGD2 levels remained unchanged in all the analyzed brain tissues (cerebral cortex, 
cerebellum, and spinal cord) (31). Interestingly, the increase of COX-2 expression 
and PGE2 levels was observed in early stages of the disease (31), suggesting a 
pathogenic role.

In the TMEV model, COX-2 expression was observed in the spinal cord (15). 
Specifically, COX-2 was expressed in oligodendrocytes undergoing apoptosis as 
indicated by immunohistochemistry experiments that found colocalization of the 
COX-2 protein and the apoptotic mediator caspase-3. These data were confirmed 
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in a further study published in 2010 (16). The latter also showed that COX-2 
mediates mechanisms of excitotoxicity against cultured oligodendrocytes (16). 
COX-2 and PGE2 gene expression were also found in primary cultures of astro-
cytes from TMEV-infected mice (32). The inhibition of PGE2 signaling at a down-
stream level using AH23848, which is a mixed EP1 and EP4 inhibitor, resulted in 
decreased pathogenesis of demyelinating disease (about 20% decrease) and sever-
ity of viral load (about 85% decrease) in the central nervous system (33).

Similar results were obtained in the cuprizone model of demyelination. 
Cuprizone takes about 5 to 6 weeks to induce a maximum demyelination in the 
brain, but oligodendrocytes express apoptotic markers earlier, starting from the first 
week of intoxication (34). In the brain of cuprizone-treated mice, both COX-1 and 
COX-2 were significantly upregulated, but the change in the expression showed 
different courses (34). COX-2 gene expression was found to be upregulated in the 
early phases of the cuprizone treatment when demyelination was not yet detectable,  
whereas COX-1 was upregulated later on at the peak of astrogliosis and microglia 
and/or macrophages activation concomitantly with severe demyelination (34). 
Interestingly, this observation led to the hypothesis that COX-2 precedes oligoden-
drocytes loss and is involved in the apoptotic processes. COX-2 was expressed in 
apoptotic caspase-3-expressing oligodendrocytes as early as after 1 week of cupri-
zone treatment (35). Further investigation in the COX-2 pathway showed that the 
cortical levels of several prostaglandins (PGE2, PGD2, PGI2, and TXB2), were upreg-
ulated (34, 35). The increase in PGE2 concentration was more than the other pros-
taglandins, and the expression of its receptors, EP1, EP2, and EP4, was upregulated 
at the peak of demyelination (35). Interestingly, only EP2 protein expression was 
increased in the early stage, after 1 week of cuprizone treatment, and has been 
implicated in the initiation of demyelination and oligodendrocytes loss (35).

Regarding LOXs, there is an increasing consent supporting the role of 5-LOX 
and its downstream products in the mechanisms of immune cell recall in the 
brain, and in the development of axonal damage and of motor disabilities. 
The 5-LOX gene was found to be a top risk gene in EAE (24). The brain concen-
trations of 5-LOX products, LTB4 and LTD4, were upregulated (18, 22–23), and 
favored the migration of inflammatory cells and lymphocytes in the brain of EAE 
mice (36–38). In the cuprizone model, the brain expression of 5-LOX was highly 
increased (39). In addition, 5-LOX has been implicated in cuprizone-mediated 
axonal damage and motor dysfunction development (39). Overall, the data gener-
ated from the animal research indicate that the arachidonic acid pathway contrib-
utes to the development of multiple sclerosis–like pathology, especially via COX-2 
and 5-LOX metabolism.

Anti-inflammatory Therapy in Multiple Sclerosis

Arachidonic acid–mediated inflammation is typically inhibited with nonsteroidal 
anti-inflammatory drugs (NSAIDs). NSAIDs have variable specificity against the 
two isoforms of COX. While some NSAIDs (e.g., ibuprofen, indomethacin, and 
naproxen), have mixed inhibitory effect on both COX-1 and COX-2 others, like 
the coxibs (e.g., celecoxib, rofecoxib, and valdecoxib) and nimesulide, specifically 
inhibit COX-2 (40). NSAIDs have been administered to patients affected by 
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multiple sclerosis to counteract symptoms related to flu, but no clinical trials have 
ever evaluated whether NSAIDs could reduce multiple sclerosis pathology as well. 
Animal models of multiple sclerosis have demonstrated the beneficial effects of 
NSAIDs. Furthermore, the pharmacological inhibition of LOX-mediated metabo-
lism of arachidonic acid exerts some beneficial effects. The following paragraphs 
describe the available evidence on the potential of COX and LOX inhibitors as 
therapeutics for multiple sclerosis.

NSAIDs treatment in patients affected by multiple 
sclerosis

It is not known whether NSAIDs have an inhibitory effect on the pathology of 
multiple sclerosis. To date, NSAIDs have been administered to patients to treat 
flu-like symptoms without taking into consideration of their potential role in oli-
godendrocytes survival and myelin protection (41–46). Nevertheless, some 
NSAIDs were shown to ameliorate fatigue (approximate percentage of improve-
ment: 10–20% with aspirin, 30% with naproxen, and 20% with ibuprofen) and 
improve cognitive abilities (approximate fold change of improvement: 1-fold with 
naproxen, 0.5-fold with ibuprofen, and 2-fold with acetaminophen) (46, 47). 
It could be hypothesized that these effects may be secondary to the attenuation of 
brain pathology due to NSAIDs treatment, as suggested by the following data from 
experimental models of multiple sclerosis.

Effect of NSAIDs in animal models of multiple sclerosis

Non-selective COX inhibitors and COX-2 selective drugs have shown protec-
tive effects in EAE, cuprizone and TMEV murine models of multiple sclerosis. 
In the EAE model, mixed COX-1/2 inhibitors (indometacin and naproxen) 
delayed the onset (about 8 days delay with naproxen) and the severity of the 
disease (about 30% improvement with indometacin and 70% with naproxen) 
(26, 48, 49). In the cuprizone model, COX-1 knockout mice normally develop 
demyelination in the same extent as matched wild type mice, indicating that 
COX-1 is not involved in the demyelination process. Conversely, knocking 
out the COX-2 gene inhibited demyelination (about 40% inhibition in the 
corpus callosum and complete recovery in the cortex) and restored motor 
functions (35).

Selective targeting of COX-2 has provided a large number of evidence, sup-
porting the prominent role of this isoform in disease initiation and severity. 
The administration of selective COX-2 inhibitors (LM01, LM08, LM11, and 
NS398), or coxibs (rofecoxib, celecoxib, and lumiracoxib) interfered with EAE 
induction by decreasing physical dysfunctions, inflammation, and demyelination; 
the protective effects of these compounds were mediated through the inhibition 
of adhesion and chemoattractant molecules, and the reduction of monocyte infil-
tration (48–51). Specifically, LM01, LM08, LM11, and NS398 inhibited the paral-
ysis period (percentage inhibition: 48, 95, 76, and 43, respectively), inflammation 
(percentage inhibition: 85, 84, 78, and 81, respectively), and demyelination 
(percentage inhibition: 74, 67, 53, and 61, respectively) (50). Celecoxib pre-
vented EAE induction, reduced the expression of adhesion and chemoattractant 
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molecules (histological nonquantitative data), and inhibited the number of infil-
trating monocytes (49). Rofecoxib and lumiracoxib reduced inflammation by 
90% and 85%, respectively (51).

In the TMEV model, the COX-2 selective inhibitor CAY10542, reduced 
demyelination by 25%, and prevented the death of oligodendrocytes (16). 
The efficacy of COX-2 targeting has been confirmed in the cuprizone model 
as well, as celecoxib greatly reduced demyelination (about 30% reduction in 
the corpus callosum and complete recovery in the cortex) along with a full 
recovery of motor abilities (35). In this model, COX-2 expression exerts del-
eterious effects on the oligodendrocytes through the production of PGE2, 
with in turn contributes to loss of oligodendrocytes by interacting with the 
EP2 receptor: the administration of an EP2 antagonist to cuprizone mice 
showed similar protective effects as the ones induced by celecoxib (35).EAE 
mice treated with an inhibitor of cPLA2 showed marked beneficial activity 
(about 85% inhibition of disease severity) (26). Because of this observation, 
the question arises whether, the protective effect is mediated merely through 
the inhibition of the COX pathway or the inhibition of LOX activity is also 
involed. It has been shown that 5-LOX selective inhibition delayed the onset 
of EAE by about 5 days (26). Similarly, in the cuprizone model, 5-LOX inhibi-
tion resulted in reduced axonal pathology and ameliorated motor disabilities 
without any improvement in the demyelination severity (39). Overall, these 
data suggest that COX-2 and 5-LOX inhibition have some nonoverlapping 
activities (52).

NSAIDs Administration: Future Perspectives

Most of the currently available pharmacological medications for multiple sclerosis 
counteract the activity of the autoimmune system. Lymphocytes are the leading 
factors in the autoimmune-mediated mechanisms implicated in the disruption 
of  myelin proteins and the death of oligodendrocytes. First-generation drugs 
(interferons and glatiramer acetate) and second-generation drugs (fingolimod, 
mitoxantrone, rituximab, ocrelizumab, ofatumumab, and others) reduce disease 
severity, progression, and relapses; their main mechanism of action include seques-
tration of lymphocytes in the lymph node, and reduction of their access to the brain 
(53–56). However, these drugs do not directly target the arachidonic acid metabo-
lism. Based on the literature, NSAIDs are currently administered to patients if flu-like 
symptoms occur. However, growing evidence supports the hypothesis that COX-2 
and 5-LOX enzymes promote downstream mechanisms that ultimately lead to 
oligodendrocyte degeneration and axon pathology, respectively, and that both con-
tribute to the development of motor disabilities. The combination of COX-2 and 
5-LOX selective inhibitors has the potential to improve multiple sclerosis pathology.
Moreover, multiple sclerosis has been associated with platelet activation and aug-
mented cardiovascular risk, which are considered as causal factors in the pathogen-
esis of the disease (57, 58). Interestingly, it has been recently observed that peripheral 
blood platelets of patients highly express COX-2 (58). In the light of these evidence, 
the administration of COX-2 selective NSAIDs could reduce both cardiovascular 
risk and the progression of multiple sclerosis.
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 Conclusion

Several pharmacological studies, conducted in experimental animal models of 
multiple sclerosis, suggest that NSAIDs that selectively inhibit the COX-2 isoform 
represent promising medications for reducing oligodendrocytes apoptosis, demy-
elination, and motor dysfunction. In addition, it is suggested that 5-LOX inhibi-
tors could be beneficial to counteract axonal pathology and to inhibit motor 
disabilities as well. The coadministration of COX-2 and 5-LOX inhibitor is a 
promising way forward for multiple sclerosis treatment.
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