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Abstract: Multiple sclerosis (MS) is an inflammatory disease of the central nervous 
system which is accompanied by demyelination of the nerves, axonal loss, and dis-
ability. Currently, no definitive treatment is recognized for MS. Stem-cell therapy for 
MS has shown promising results and has attracted attention as an alternative thera-
peutic option. Various stem cell sources such as mesenchymal, embryonic, and neu-
ral have been identified. This chapter gives an overview of the advances made in our 
understanding of these stem cells under two broad categories: exogenous and 
endogenous. Stem-cell therapy in MS and the substantial literature regarding their 
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therapeutic potential for MS are discussed. Much of the promising data are still in 
experimental stage, and further clinical trials are needed to rigorously evaluate the 
safety, validity, and feasibility of these stem cells for the treatment of MS.

Key words: Endogenous stem cells; Mesenchymal stem cells; Multiple sclerosis; 
Pluripotent stem cells; Stem-cell therapy.

Introduction

Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous 
system (CNS) and leads to demyelination of neural fibers, severe neurological 
symptoms, and progressive disability (1, 2). None of the currently available drugs 
are effective in supporting regeneration of the demyelinated areas, and preventing 
disease progression (2). Stem cells, because of their self-renewal and differentia-
tion capacity into various cell types, appear to be suitable candidates for alterna-
tive therapeutic strategies for MS (3, 4). A wide variety of stem cells that have 
therapeutic potential in neurodegenerative diseases have been identified; these 
include, but are not limited to, mesenchymal stem cells (MSCs), embryonic stem 
cells (ESCs), and neural stem cells (NSCs) (3–5).This chapter gives an overview 
of stem cells and their therapeutic potential for MS.

Exogenous Stem Cell Therapy in MS

Bone marrow mesenchymal stem cells

Bone marrow mesenchymal stem cells (BMSCs) are multipotent stem cells that 
are derived from the bone marrow and have chondrogenic, osteogenic, and adip-
ogenic differentiation capacities. They can also differentiate into neurons and 
glial cells (6, 7). The anti-inflammatory, low immunogenicity, and multipotency 
characteristics of BMSCs render them as a desirable cell source in regenerative 
medicine (6, 7). Unlike other source of stem cells, ethical concerns or tumori-
genic activity is not a concern with BMSCs. They can be cultured and propa-
gated easily in vitro, and autologous transplantation can be achieved without 
rejection (8, 9). BMSCs exhibit migration and homing ability into damaged parts 
of CNS. Transplantation of this cell population into damaged neural tissues leads 
to functional improvement via formation of glia and neurons that is identifiable 
at molecular and cellular levels (10–12). Furthermore, BMSCs have the ability to 
secrete many autocrine and/or paracrine factors that prevent apoptosis, and 
mediate neurogenesis and angiogenesis (13, 14). These neurotrophic and neuro-
protective factors increase viability and proliferation of neuroglial cells and pro-
mote repair and recovery (15, 16). Several studies have confirmed the capacity 
of BMSCs to improve remyelination following experimental autoimmune 
encephalomyelitis (EAE) (17, 18). These results suggest that BMSCs are promis-
ing cell sources for functional recovery in MS patients. Auto transplantation of 
BMSCs in patients leads to significant recovery, and limits disability (19, 20). 
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The transplantation of differentiated BMSCs results in better glial cell engraft-
ment than undifferentiated BMSCs. Transplantation of neuroglial progenitors 
derived from BMSCs enhances the homing and functional maturation rate of the 
cells (21, 22). Although the mechanisms that control neuroglial differentiation of 
BMSCs are not clearly understood, they can be differentiated into neuroglial 
phenotypes using growth factors, retinoic acid, and cytokines (23, 24). Recovery 
of the demyelinated areas and promotion of remyelination following transplan-
tation of glial progenitors derived from BMSCs in animal MS models have been 
documented (25, 26). In experimental animal models, BMSCs have been shown 
to reduce immune attack to myelin sheets by suppressing T-lymphocyte prolif-
eration (27,  28), diminishing inflammation and demyelination, inducing 
oligodendrogenesis (12), and improving remyelination (29) and tissue regenera-
tion (10). Clinical trials suggest that BMSCs have the potential to reduce infiltra-
tion, decrease demyelinated areas, and improve axonal formation and functional 
recovery (30).

Hematopoietic stem cells

Hematopoietic stem cells are isolated from bone marrow and give rise to hemato-
poietic and lymphopoietic precursor cells, and lymphoid to myeloid lineage cells. 
Cell-therapy strategies based on engraftment of hematopoietic stem cells have 
been shown to result in neurological regeneration and repopulation of the immune 
system (31–35). In animal models, similar positive effects have been reported; 
however, controversial results also exist (36, 37). Engraftment of hematopoietic 
stem cells causes clinical improvement in MS patients (38, 39), and auto trans-
plantation of hematopoietic stem cells show positive results in the management of 
progressive MS (40, 41). Some systematic reviews show that hematopoietic stem-
cell therapy in patients with progressive MS leads to recovery of neurological 
function and prevents mortality of patients (42–45).

Umbilical cord MSCs

Several studies have shown the therapeutic potential of human umbilical cord–
derived mesenchymal stem cells (hUC-MSC) in MS patients. hUC-MSCs are 
promising candidate sources of MSCs that can be collected without pain. They 
have a faster self-renewal ability compared to other MSCs (46), and they differen-
tiate into a variety of cell types such as bone, cartilage, adipose, muscle, cardio-
myocyte, neuron, astrocyte, and oligodendrocyte (47). There is compelling 
evidence that hUC-MSCs, compared to BM-MSCs, have higher proliferation and 
differentiation abilities, and stronger immune tolerance because of lower human 
leukocyte antigen-1 (HLA-1) expression (48, 49). hUC-MSCs can improve clini-
cal manifestations in the animal model of EAE. hUC-MSC-treated EAE mice 
showed long-term (50 days) recovery of behavioral functions and improvement of 
histopathological characteristics, including suppression of perivascular immune 
cell infiltrations and reduction of demyelination in the spinal cord (50). The first 
report of successful treatment of an MS patient with hUC-MSC was published in 
2009 (51). After transplantation of hUC-MSC in a patient with refractory progres-
sive MS, the disease course was stabilized with signs of improved sensory function 
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and muscle strength, and the patient could even stagger along with the help of 
family (51). In subsequent clinical experiments, during a 1-year observation 
period, no significant adverse effects were found in groups treated with hUC-
MSC, indicating a better safety profile of these stem cells (52). Administration of 
hUC-MSC showed lower relapse occurrence and EDSS (Expanded Disability 
Status Scale) scores in MS patients. Assessment of inflammatory cytokines dem-
onstrated a shift from Th1 to Th2 immunity in treated patients. An increase in 
HGF was also observed in hUC-MSC-treated group which may have played a role 
in the improvement of MS. HGF is a multifunctional cytokine which is important 
for tissue regeneration with its ability to stimulate mitogenesis, cell motility, and 
matrix invasion (52). According to a case report, a 25-year-old MS patient, 
throughout the 4-year treatment period (2008–2012) with BM and UC-MSC, was 
completely free of clinical and radiological disease activity. Also, the patient had 
good recovery from severe relapse and was able to walk unaided. No new lesions 
were observed on the MRI performed at the end of the treatment period, and 
many lesions had resolved (53).

Human Wharton’s jelly MSCs

Wharton’s jelly is a mucoid connective tissue that surrounds the umbilical vessels. 
Human Wharton’s jelly–derived mesenchymal stem cells (hWJ-MSCs) are a valu-
able alternative to BM-derived stem cells (54). They can differentiate into many 
different cell types, including fat, bone, cartilage, and neural cells (29, 55–58). In 
an experimental model of EAE, transplantation of hWJ-MSCs-derived oligoden-
drocyte progenitor cells into the brain ventricles of mice reduced the clinical signs 
of EAE and significantly increased remyelination (59). In another study on rat 
EAE model, hWJ-MSC suppressed proliferation of activated T-cells with contact-
dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was 
shown as the major effector molecule responsible for T-cell suppression (60).

Adipose-derived MSCs

Adipose tissue is an abundant and accessible source of MSCs that can be obtained 
easily in sufficient quantities with a minimal invasive procedure. These adipose-
derived mesenchymal stem cells (AdMSCs) are multipotent and differentiate into 
chondrocyte, myocyte, neuronal, and osteoblast lineages (61, 62), and are effective 
in the treatment of immune-related diseases, including GVHD, MS, and rheumatic 
disease (63).The differentiation and immunomodulatory potencies of AdMSCs are 
equivalent to that of BMSCs. Whereas hAdMSC derived from elderly and young 
donors showed similar proliferation, differentiation, and senescence marker pat-
terns, BMSCs from the elderly showed reduced proliferation, decreased differen-
tiation, and increased senescence (64). The therapeutic potential of AdMSCs in a 
mouse model of peripheral nerve sciatic crush has been demonstrated (65). The 
therapeutic efficacy of AdMSCs isolated from lean and obese persons indicated 
that obesity reduces the anti-inflammatory effects of human AdMSCs such that 
they may not be a suitable cell source for the treatment of autoimmune diseases 
(66). AdMSCs are a valuable source of adult MSC with neuronal differentiation 
ability, and are a useful remedy to treat neurodegenerative diseases  (67). 
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Recent studies suggest that AdMSCs have a significant beneficial effect on chronic 
EAE model, both in the preclinical phase of the disease and after the disease has 
entered an irreversible clinical course (68). In EAE lesions, the amelioration of 
clinical scores was accompanied by a strong reduction of spinal cord inflammation 
as well as demyelination and axonal damage. Administration of AdMSCs in chronic 
EAE induces a Th2-type cytokine shift in T-cells. The penetration of AdMSCs 
within demyelinated areas is accompanied by increased number of endogenous 
oligodendrocyte progenitors (69). Additional studies showed that murine AdMSCs 
(mASCs) suppress T-cell proliferation via inducible nitric oxide synthase (iNOS) 
and cyclooxygenase (COX-2) activities. mASCs also prevented lipopolysaccharide 
(LPS)-induced maturation of dendritic cells (DCs) (70). The efficacy of intrave-
nous AdMSCs transplantation in remyelination, in mouse cuprizone model of MS, 
can be significantly enhanced by 17β-estradiol (E2) administration (71). AdMSCs 
can upregulate immunomodulatory cytokines, such as TGF-β, and downregulate 
inflammatory cytokines, such as IFN-γ, and transcription factors, such as t-bet 
(72). Brains and lymph nodes of EAE rats treated with AdMSCs show a significant 
expression of human leukocyte antigen G (HLA-G) gene. The immunomodulatory 
effects of AdMSCs may be related to their secretion of HLA-G (73). Engineering of 
AdMSCs as carriers for IFN-β delivery, or secretors of IL-10, has shown beneficial 
effects in experimental models of MS (74, 75).

Neural stem cells

NSCs are unipotent stem cells found in the subventricular zone (SVZ) of the lat-
eral ventricle. This part of the CNS is routinely used for isolation of NSCs 
(76, 77). The unipotency and migratory properties of NSCs help to repopulate 
neural cells in the CNS following inflammation (4, 78). The potential of NSCs to 
differentiate into neuroglial cells and oligodendrocytes suggests their application 
as a beneficial method for the treatment of MS (79–84). NSCs can also be derived 
from bone marrow, and these cells also exhibit the capacity for neuroglial differ-
entiation (81, 82).

Endometrial stem cells

Human endometrium contains a small number of endometrial stem cells 
(hEnSCs) that can be considered as a source of MSCs for cell-based tissue engi-
neering applications to repair bone, neural cells, osteoblasts, cartilage, and mus-
cle (85). It is well understood that endometrial stem cells (EnSCs) are responsible 
for the remarkable regenerative capacity of endometrium (86). hEnSCs can dif-
ferentiate into high-efficiency cholinergic and dopaminergic neurons with con-
firmed formation of functional neurons (87). EnScs alleviate neuroinflammation 
through the impairment of Th17 and Th1 CD4 cells (88). hEnSCs can be dif-
ferentiated into Schwann cells (SCs) in both 2D and 3D cultures. These differen-
tiated cells in fibrin gel could present new opportunities for tissue engineering 
approaches and subsequent treatment of neurodegenerative disorders (89). 
hEnSCs can differentiate into oligodendrocyte progenitors with characteristic 
oligodendroglial precursor cells (OPCs) morphology, and express markers such 
as PDGFRα, Sox10, A2B5, Olig2, and O4 (90). hEnSCs reduced perivascular 
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infiltrate and EAE scores, and improved overall tissue appearance (91) in experi-
mental mice. Intravenous or intrathecal administration of hEnSCs to four 
patients showed a good safety profile. After 1 year of follow-up, the patients 
showed no immunological reactions or treatment-associated adverse effects; 
based on radiological and functional assessment as reported by radiologists, no 
disease progression was observed (92).

Embryonic stem cells

ESCs are derived from the inner cell mass of blastocyst-stage embryos. ESCs are 
totipotent cells that can differentiate into all tissues and cell types, including 
hematopoietic precursors, heart and skeletal muscles, and neural cells. ES cells 
can be considered as a valuable source of cells for deriving glial precursors that 
can interact with host neurons and efficiently myelinate axons in brain and spinal 
cord and also promote improvement of motor function (93, 94). Human embry-
onic stem cells (hESCs) have proved a promising source for the generation and 
replacement of mature oligodendrocytes (95). Accordingly, hESC-derived oligo-
dendrocytes can play a supportive role in the repair of CNS injuries (96). 
Intracerebroventricular transplanted hESC-derived oligodendroglial progenitor 
(hESC-OPs) cells ameliorated the clinical symptoms and promoted recovery from 
EA E paralysis. EAE mice that received hESC-OPs induced Foxp3-positive 
T-regulatory cells and produced a new population of TREM2-positive cells that 
has anti-inflammatory and tissue regeneration promoting properties (97). Also, 
transplanted hESC-derived neural precursor cells into the brain ventricles signifi-
cantly reduced the clinical signs of EAE mice. Transplanted neural precursors 
migrated into the host white matter; however, differentiation into mature oligo-
dendrocytes and remyelination were insignificant (3). In the EAE model of MS, 
the therapeutic effect of hES-MSCs, including reduction of clinical symptoms 
and  prevention of neuronal demyelination, was significantly higher than BM-​
MSCs  (98). Transplantation of ESCs in adult rat spinal cord had the ability to 
survive, migrate, and differentiate into mature myelin-producing cells in areas of 
demyelination (99). Clinical reports of transplantation of hESC in patients with 
MS and Lyme disease have shown remarkable improvement in their functional 
skills, overall stamina, cognitive abilities, and muscle strength (100).

Induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) are generated via reprogramming of 
mouse fibroblasts into ESCs that overexpress four genes: Sox2,Oct3/4, Klf4, and 
c-Myc (101, 102). iPSCs exhibit similar phenotype of ESC, and proliferate and 
differentiate into all cell types of the body as well as teratomas formation 
(103, 104). Remyelination activity of iPSCs was assessed in mouse EAE models. 
The formation of oligoprogenitor cells and myelinating oligodendrocyte confirms 
the therapeutic effects of cell therapy based on iPSCs. Also, iPSCs have the neu-
roprotective effects via secretion of growth factors such as LIF that amplify the 
viability of endogenous oligoprogenitor stem cells and remyelination (105, 106). 
iPS cells can provide the allogeneic and autologous stem cell therapy and hold 
promise for specific treatment.
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 Spermatogonia stem cells

Spermatogonia stem cells (SSCs) are derived from seminiferous tubules in testes, 
and in vitro studies show the pluripotency of these cells (22, 107–109). They dif-
ferentiate into ES-like cells, with a similar phenotype and differentiation capacity 
(110–112). They can be considered an alternative cell source to ESCs without the 
ethical limitation and immunological problems associated with ESCs. Neural and 
glial differentiation of ES-like cells derived from testes have been reported by sev-
eral groups. The efficiency of neural differentiation was confirmed using action 
potentials recorded by Patch-clamp electrophysiological examinations, and the 
capacity of SSCs to form functional neurons and oligodendrocytes has been 
reported. Our findings showed functional recovery and significant remyelination, 
following transplantation of oligoprogenitor cells derived from mouse SSCs, in an 
animal model of demyelination (22). Further investigations should be done to 
confirm the recovery outcome of this novel pluripotent cell source in animal 
models of MS.

Endogenous Stem Cell Niches Reactivation in MS

Apart from the exogenous sources of stem cells described above, the endogenous 
stem cell population opens up a new perspective for MS treatment (113). Studies 
on patient brain tissue samples and animal models of MS show that in the adult 
CNS, endogenous regeneration activities exist; however, repair efficacy is low and 
tends to diminish during disease progression (114, 115). Mature oligodendro-
cytes are extremely degenerative due to primary insult, or secondary to oxidative 
and excitotoxic stress; thus, they do not participate in myelin repair activi-
ties  (116). However, resident OPCs (117) or adult neural stem cells (aNSCs) 
(118–120) become activated and are recruited to lesion sites in order to perform 
remyelination and restore axonal functionality. There is evidence that OPCs pro-
duce the vast majority of remyelinating oligodendrocytes (121), which can also 
originate from the stem and precursor cells of adult SVZ (122). In response to 
injury or demyelination, OPCs in the surrounding area convert from a quiescent 
state to a regenerative phenotype (123). Injury to the CNS activates microglia 
and astrocyte cell types and disturbs tissue homeostasis, resulting in OPC activa-
tion (124). These two cell types are the main factors that induce proliferation and 
migration of OPCs to the site of injury in demyelinating insults (124, 125). 
During the regeneration phase of demyelination, some factors have been shown 
to contribute to the regulation of OPC differentiation into myelinating oligoden-
drocytes (126). Several studies have provided evidence for the inhibitory effects 
of some factors such as semaphorin 3A (127), Nogo receptor (128), LINGO-1 
(129, 130), and wnt signaling pathway (131) on OPCs differentiation during 
development and remyelination. Remyelination can occur in demyelination con-
ditions but is very limited. Remyelination failure is due to the impact of numer-
ous inhibitory mechanisms (132, 133). To improve functional recovery, 
therapeutic approaches should be developed by either potentiating endogenous 
stem cell populations or by providing exogenous source of repair-mediating cells 
for the injured CNS. In this section, we describe recent studies related to the 
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endogenous stem cells of the central and peripheral nervous systems, and their 
potential therapeutic application for the treatment of MS.

CNS Neural Stem Cell pools

Within the adult mammalian brain, NSCs are located in the SVZ of lateral ven-
tricles, hippocampal subgranular zone (SGZ), and the central canal (CC) of the 
spinal cord where they divide and give rise to new neurons in a process termed 
adult neurogenesis (4, 134, 135). Other germinal regions have been identified in 
the third ventricle, hypothalamus, the subpial layer of the cerebellum, and the 
meninges (136, 137). NSCs located in very specific microenvironments, called 
niche, and their cellular makeup have been shown to consist of a variety of cells 
including NSCs and their immature progeny accompanied by endothelial, astro-
glial, and ependymal cells (138, 139). They receive structural and trophic sig-
nals from cell-to-cell and cell-to-extracellular matrix (ECM) contact. This 
communication provides critical spatial and temporal information, which in 
turn allows stem cells to act in response to both physiological and pathological 
stimuli (138, 140).

SVZ of lateral ventricles

SVZ is the largest neurogenic niche in the adult CNS that is capable of sustaining 
neurogenesis throughout life (141). The adult SVZ displays a high degree of 
organization with stem cells and other cell types which is an important feature 
of the neurogenic region of SVZ (142). The SVZ is composed of heterogeneous 
cell types including nondividing ependymal cells (E1) with a large apical surface 
and multiple long cilia (143), astrocyte-like type B cells (B1) (slow dividing) that 
give rise to type C cells (fast dividing), which in turn differentiate into neuro-
blasts (type A) and migrate to olfactory bulb and provide new interneurons 
(144, 145). The en face view of the lateral ventricle revealed that the apical cil-
ium of one or more B1 cells was surrounded by E1 cells in striking pinwheel 
architecture which is specific to neurogenic area (142). B1 cells contact the ven-
tricle via their apical cilium and blood vessels at the basal processes. They are 
quiescent and slowly proliferate in normal condition but can become activated 
in different pathologies (146).

Intense research in the last decades on animal models of MS and tissue sam-
ples of MS patients has shown that the adult SVZ niche is reactivated in response 
to various types of proximal insults by producing new progenitors that migrate 
toward the injury site and differentiate into oligodendrocytes (118, 147–149). In 
addition, it has been reported that type B (150), type C (147), and type A cells 
(151) have all been indicated as sources of newly generated oligodendrocytes in 
physiological and pathological conditions. Furthermore, we recently found that 
ventricular pinwheel organization and structure are modified and E1 cells are 
reactivated in response to inflammatory demyelination (152). However, SVZ pro-
genitor’s recruitment into the lesion site in the demyelination condition was rela-
tively poor and their differentiation potential to oligodendrocyte is limited because 
of some inhibitory factors in mature environments during MS.
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SGZ of the hippocampus

The second major region that sustains neurogenesis in the adult brain through-
out life is the SGZ of the hippocampus, which is located at the border of the 
granule cell layer (GCL) and the hilus of dentate gyrus (DG) (153). Neurogenesis 
in the adult hippocampus occurs throughout life and mainly contributes to the 
processes involved in learning and memory; however, the ultimate function of 
neurogenesis in DG remains to be clarified (154). Radial glia-like cells (RGL) in 
DG represent a quiescent population which may be provoked to generate the 
proliferative precursors identified as intermediate progenitors, namely, IPC1 and 
IPC2 cells (155). These cells produce novel immature granule neurons (type 3 
cells), which migrate into the inner GCL and differentiate into granule cells of the 
DG (153). They extend their dendrites and axons toward the CA3 region and 
become functionally integrated into host circuitry (119).

Cognitive impairment and memory dysfunction affect more than 60% of MS 
patients (156). It has been reported that cognitive dysfunction is correlated with 
hippocampal demyelination (157). Although the molecular mechanisms that 
control hippocampal NSC proliferation and differentiation in physiology and 
pathological conditions are unknown, recent findings reveal that acute inflam-
matory demyelination in animal model of MS could provoke the hippocampal 
stem cell niche and enhance proliferation of NPCs in SGZ (158). Thus, inflam-
matory factors such as cytokines and chemokines can affect the proliferative 
capacity of NSCs and alter neurogenesis in the SGZ (159). Huehnchen et al. 
(2011) reported that NPC proliferation in the DG increases not only in the acute 
phase but also in the chronic phase of the disease(160). Furthermore, it has been 
found that the neurogenic niche of the hippocampus was reactivated in animal 
models of MS (161).

Central canal of the spinal cord

The spinal cord is the caudal part of CNS that consists of 33 nerve segments, from 
the cervical to coccygeal sections. There is a central canal at the center of the spi-
nal cord which contains the cerebrospinal fluid (CSF) (134). The ependymal layer 
of the spinal cord has an important role in embryonic development and is well 
known for its function as a neuroprogenitor niche (162). In the late 1990s, mul-
tipotent stem cells were discovered in the adult mammalian spinal cord. Isolated 
NSC from central canal of rat and mouse can produce neurospheres that are able 
to self-renew, proliferate, and differentiate into the three major CNS cell types (163). 
Moreover, it was shown that NSC resides at the central canal and is able to self-
renew and generate mature oligodendrocytes during injury (164). The adult central 
canal stem cells are quiescent under physiological conditions; however, some pro-
liferation has been observed at the dorsal and ventral tip of the CC that contacts 
the lumen or the subependymal position (135, 164). Dorsal ependymal cells 
show radial glial morphology and express GFAP, nestin, CD15, and/or brain 
lipid–binding protein (BLBP) (165). It has currently been shown that ependymal 
cells at both dorsal and ventral point of the central canal are able to generate prog-
eny of multiple fates under physiological and pathological conditions (166). 
Further research is needed to fully unravel the neurogenic properties and/or 
potential of the central canal in MS.
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Other germinal areas of the CNS

Beyond the classic NSC niches referenced above, other germinal niches have been 
identified. These germinal regions include the hypothalamus, the third ventricle, 
the meninges, and the subpial layer of the cerebellum (167). The parenchyma of 
the cerebral cortex and spinal cord are mainly comprised of restricted neuroglia 
precursors and these niche are referred to as nongerminal regions of CNS (168). 
These neurogenic niches are composed of a heterogeneous population of NSC 
that is able to self-renew and give rise to most of the neuronal and glial precursors (4). 
Several studies showed that the third ventricle and hypothalamus neurogenic 
zone contain multipotent cells that can give rise to neurons, oligodendrocytes, 
and astrocytes in vitro and in vivo (169–171). Xu and others reported that the third 
ventricle ependymal layer cells were able to migrate into hypothalamic parenchy-
mal regions and differentiate into functional neurons in response to injury (172). 
Our previous study also showed that progenitor cells in the third ventricle sur-
roundings could be reactivated by local demyelination in the optic chiasm (128, 
171). Also nestin and DCX-positive cells have been found in the meninges of the 
brain and spinal cord (138, 173). We concluded that there are widespread sources 
of stem cells in the CNS that can be activated in different pathological situations, 
especially in MS.

Peripheral Endogenous Stem Cells and Their Role in MS

Schwann cells

In the peripheral nervous system (PNS), a different source of cells has been iden-
tified that can be used for the treatment of CNS diseases like MS. SCs have been 
intensely studied in CNS repair and have been shown to support and myelinate 
regenerating axons (174). Several studies that transplanted neonate or adult SCs 
in different animal models of CNS demyelination had shown that SCs efficiently 
remyelinate CNS axons (175). The myelin formed by a grafted SC was stable for 
up to 5 months post-graft and improved conduction of demyelinated axons 
(176,  177). Neuroregenerative effect of SCs has also been reported in spinal 
trauma models which highlighted the ability of these cells to regenerate axons in 
the injured area (178). However, the important limitation concerning the use of 
SCs as a therapeutic approach to promote remyelination in MS is their inability to 
migrate efficiently when grafted in injured CNS (179). Modifying SC-intrinsic 
properties, like boosting expression of neurotrophins (e.g., BDNF and NT3), pro-
mote SC migration and myelinating potentials (180, 181). Also, SC-mediated 
myelination and axonal regeneration increased when the environment of the SC 
was modified (182).

Olfactory ensheathing cells

Olfactory ensheathing cells (OEC) are very similar to SCs and belong to the 
peripheral olfactory system that ensheathes the axon of the first cranial nerve 
but does not myelinate it (183). Recently, it was shown that the origin of OEC 
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during development was from neural crest cells (NCCs) (184). Although 
OEC does not usually myelinate axons of the first cranial nerve, the vast stud-
ies have shown that OECs are capable of extensive functional remyelination 
when grafted into demyelinated lesions (185, 186). Numerous studies pro-
posed  that OEC migrates better than SC when faced with CNS elements 
(187, 188). From a therapeutic point of view, OEC transplantation appears to 
be better than SC.

PNS progenitors

PNS progenitors include Schwann cell precursors (SCps), boundary cap cells (BCs), 
and olfactory epithelial progenitors (OEps) that all originate from NCCs (175). It 
has been reported that SCp has greater capacity for remyelination after grafting in 
demyelinated CNS or spinal cord injury (189). BC is the potential stem cell of spinal 
roots (190) that could migrate freely in the demyelinated CNS and compete with 
endogenous myelin-forming cells to remyelinate axons of far distant lesions (191). 
BC can also differentiate into central myelin-forming cells in vitro and in vivo (192). 
OEp was extracted from olfactory epithelium with a less invasive method and when 
pieces of olfactory lamina containing OEp were grafted into injured rat spinal cord, 
they promoted functional recovery in paraplegic rats (193). OEp provided exten-
sive remyelination upon transplantation into demyelinated lesion (194).

Endogenous Neural Stem Cell Niche Modulation as a 
Therapeutic Approach

The niche microenvironment regulates NSC survival, proliferation, and differen-
tiation during health and disease (142, 152). Therefore, different molecular strat-
egies have been studied in an effort to enhance the NSC niche potential for 
facilitating repair and aiding in functional recovery of various neurodegenerative 
disorders by using new pharmacological targets (138). Administration of exoge-
nous growth factors such as EGF, PEDF, HGF, and CNTF in mice has been reported 
to enhance NSC proliferation (195, 197). In addition, other factors such as bFGF, 
EGF, and BDNF have also been shown to enhance neurogenesis and eventually 
enhance functional recovery in animal models of neurological disease (198–200). 
Administration of valproic acid has been shown to attenuate symptoms of EAE, 
and increase endogenous myelin repair by recruiting NSCs and oligodendrocyte 
progenitors to the lesion sites (201). Moreover, treatment of EAE animals with 
polymerized nanocurcumin showed promising results in enhancing neuroprotec-
tion and myelin repair (202). Certain antidepressants like fluoxetine have been 
revealed to be capable of increasing neurogenesis (203). Administration of small 
interfering RNA (siRNA) or specific antibodies against various inhibitory targets 
such as Nogo, Nogo receptor (NgR), LINGO1, and Sema3A in different animal 
models of MS and spinal cord injury enhance proliferation, migration, and dif-
ferentiation potential of endogenous stem cells and facilitate axonal regeneration, 
myelin repair, and functional recovery (128, 204–207). Khezri and coworkers 
reported that administration of cyclic AMP inhibits the progression of EAE dis-
ease and potentiates recruitment of endogenous NSCs and myelin repair (208).
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Conclusion

The existence of NSCs and neurogenic niches in the adult mammalian CNS is 
clearly recognized. The functional implication of adult neurogenesis and gliogene-
sis continues to grow as new researches describe their critical roles in both health 
and disease. In spite of this growing body of evidence and progress in our under-
standing of NSC and niche functions in physiological and pathologic situations, 
several critical issues remain to be answered. The main issue is the translational 
relevance of the basic biology, that has been described in animal models, to human 
neurogenesis, and clinical trials. Moreover, the ultimate molecular mechanisms that 
influence endogenous stem cell migration will also be a key in developing appro-
priate treatments and strategies to prevent, alleviate, and treat MS. Further studies 
to identify the definitive nature, location, and behavior of NSC are warranted to 
realize the full therapeutic potential of these stem cells for the treatment of MS.
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