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Abstract: Glioblastoma (GBM), a primary brain tumor, remains an unmet medi-
cal need. One of the major obstacles to GBM treatment is the adequate properties 
of drugs. Complex pathobiology of GBM, including local invasion and intratu-
moral heterogeneity, represent major challenges to generating effective therapies. 
We discuss here the design of targeted cytotoxic drugs with an increased access to 
tumors and pathophysiologically important tumor compartments. Our research 
and others’ have shown that interleukin 13 receptor alpha 2 (IL-13RA2), EphA2, 
and EphA3 receptors are overexpressed in most patients with GBM, but not in 
normal brain, and also in spontaneous canine high-grade gliomas like GBM, an 
excellent translational model of GBM. These receptors and also the EphB2 recep-
tor are overexpressed and are functional in several GBM compartments involved 

http://dx.doi.org/10.15586/codon.glioblastoma.2017
https://creativecommons.org/licenses/by-nc/4.0/
mailto:debinski@wakehealth.edu
http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch17


Delivering Cytotoxic Therapies to Glioblastoma342

in tumor progression and/or resistance to therapies. We pursue the novel idea of 
targeting all four receptors with one targeted cytotoxic compound (QUAD-CTX). 
We are constructing a molecularly targeted anti-GBM drug that (i) may not require 
patient prescreening, (ii) will attack most tumor compartments known to be 
pathobiologically important, and (iii) performs these functions in one pharma-
ceutical entity, so it will be suitable for monotherapy. We thus wish to take advan-
tage of a unique opportunity to produce an off-the-shelf, highly specific, 
molecularly targeted drug candidate suitable to treat perhaps even all patients 
with GBM. We envision that this “molecular resection” will translate into clear-cut 
durable responses in patients suffering from this dreadful disease.

Key words: Convection-enhanced delivery; Glioblastoma; IL-13RA2; Receptors; 
Targeted cytotoxins

Introduction

Effective therapy of glioblastoma (GBM) remains an elusive goal. Despite nearly 
80 years of effort, only 1 month per decade has been added to the mean survival 
rate of GBM patients, and the 2-year survival rate remains below 25% with practi-
cally no cures (1). Recently, several highly anticipated efficacy trials including 
antiangiogenic therapies all failed in patients with GBM (2–5). Similarly, inhibit-
ing a vital signaling pathway in a single compartment of GBM, namely, glioma 
stem-like cells (GSCs), conferred no clinical benefit (6, 7). Many small-molecule 
inhibitors have not progressed beyond early-phase trials based on little objective 
benefit (8, 9). On the other hand, immunotherapy trials showed promising results, 
including dendritic cell vaccination against IL-13RA2 (10), among other targets, 
and peptide vaccination against EGFRvIII (11). Although the vaccination against 
EGFRvIII in recently finished efficacy trial reproduced results from Phase I and II, 
the control group unexpectedly showed an increase in overall survival by 40% 
from previously observed (12). This is reminiscent of a similar happening when 
an IL-13-based cytotoxin was used in Phase III PRECISE trial (13, 14). Of interest, 
a medical device called Optune (Novocure) generating electric fields demon-
strated clinical efficacy (15, 16). In short, GBM remains refractory to standard and 
experimental treatments. Predictions about translational potential of virtually all 
therapeutic approaches have not been realized thus far.

High mortality in GBM is often attributed to its complex pathobiology, includ-
ing high cellularity, neovascularization, hypoxia/necrosis, immune cell infiltra-
tion, and local invasion (17). Moreover, GSCs may play an important role in GBM 
progression/recurrence and resistance to therapies like chemotherapy or radiation 
(18, 19). Recently, four genomic subtypes of GBM were delineated: proneural, 
neural, mesenchymal, and classical (20, 21), supportive of the complex pathobio-
logical nature of GBM. Common treatment approaches involve surgery (22), radi-
ation therapy (23), and various chemotherapeutic regimens (24, 25).

Other major obstacles to GBM treatment is the presence of barriers like blood–
brain barrier (BBB) and blood–brain tumor barrier (BBTB), limiting or outrightly 
preventing any diffusion of drugs into tumors when given systemically (Figure 1). 
We believe that we can improve treatment of GBM by addressing crucial issues in 
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drug design and their delivery by maximizing drugs access to tumors and their 
targets. This can be achieved by generating anti-GBM drugs that attack concomi-
tantly multiple GBM compartments that are responsible for tumor progression 
and resistance to the existing therapies and experimental therapies. For example, 
we can aim at four molecular targets like IL-13RA2, EphA2, EphA3, and EphB2 
receptors that are specifically overexpressed on GBM tumor cells.

Targeted Cytotoxic Therapy of GBM

GBM is the most common primary brain tumor in adults, and the median survival 
is only ~14.5 months (1, 26). We discovered that interleukin 13 receptor alpha 2 
(IL-13RA2) and EphA2 receptor are overexpressed in most patients with GBM, 
but not in normal brain (27–31), and also in spontaneous canine GBM, an excel-
lent translational model of GBM (32–35). Expression of IL-13RA2 and EphA2 is 
partially overlapping; hence, the combined overexpression is ~90% in patients 
with GBM (31). IL-13RA2 and EphA2 are targets for multiple therapeutic 
approaches currently in the clinic or under preclinical evaluation (36–52). The 
first generation of an IL-13-based cytotoxin produced in our laboratory, which 
nonspecifically targeted IL-13RA2, demonstrated clinical efficacy in patients with 
recurrent GBM (13, 53–55). We developed a protocol for a Phase I clinical trial in 
dogs with gliomas (see also chapter 21, page 405) and began the trial using a 
cocktail of cytotoxins targeting IL-13RA2 (using a variant of IL-13 as a specific 
targeting ligand) and EphA2 receptor (based on ephrin A1, a ligand for the EphA2 
receptor). The drugs are given locoregionally through convection-enhanced deliv-
ery (CED) using anti-reflux catheters (Figure 2 in Chapter 21). We have already 
seen significant antitumor responses in this dose-finding trial.

Figure 1 Schematic drawing of the blood-brain barrier. The blood–brain barrier is comprised of 
neurovascular units. Endothelial cells are connected by tight junctions and share a basement 
lamina with pericytes. Astrocytic end-feet are also at the basement lamina interface and 
these cells interact with neurons (This figure was developed using Servier Medical Art (http://
www.servier.com/Powerpointimage-bank) under a Creative Commons attribution 3.0 
Unported License). (Adapted from Pharmaceutics 2015;7(3):175–187.)
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Figure 2 IL-13RA2 and EphA2 in cancer. (A) Schemata of normal tissue, IL-13RA1/IL-4A, and 
tumor-associated receptor, IL-13RA2 for IL-13 (adapted from Sci Med 1998;5:36–42). 
(B) Kaplan–Meier survival plots with differential IL-13RA2 gene expression. REMBRANDT 
database of human gliomas was used for calculations (https://caintegrator.nci.nih.gov/
rembrandt/). All differences were statistically significant. (C, D) Schemata of Eph receptors 
and their ligands, ephrinAs, respectively. (E) Kaplan–Meier survival plots with differential 
EphA2 gene expression. REMBRANDT database of human gliomas was used for calculations 
as in B. All differences were statistically significant.
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Figure 2 (Continued). IL-13RA2 and EphA2 in cancer. (A) Schemata of normal tissue, IL-13RA1/
IL-4A, and tumor-associated receptor, IL-13RA2 for IL-13 (adapted from Sci Med 1998;5:36–42). 
(B) Kaplan–Meier survival plots with differential IL-13RA2 gene expression. REMBRANDT 
database of human gliomas was used for calculations (https://caintegrator.nci.nih.gov/
rembrandt/). All differences were statistically significant. (C, D) Schemata of Eph receptors 
and their ligands, ephrinAs, respectively. (E) Kaplan–Meier survival plots with differential 
EphA2 gene expression. REMBRANDT database of human gliomas was used for calculations 
as in B. All differences were statistically significant.
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Our research and others’ have shown that IL-13RA2, EphA2, and also EphA3 
(Figure 2) are widely present in various compartments of GBM tumors. For 
 example, all three receptors are expressed in tumor cells of the core of GBM 
tumors. Importantly, IL-13RA2, EphA2, and EphA3 are present on tumor- 
infiltrating cells, while EphA2 is also overexpressed in tumor neovasculature 
(56, 57). Interestingly, IL-13RA2, EphA2, and EphA3 were associated with, and 
play crucial roles in, the pathobiology of GSCs. IL-13RA2 is abundant in cells 
isolated as GSCs from GBM (58–60) and contributes to their cell stem properties 
(61). EphA2 and EphA3 drive self-renewal and tumorigenicity of GSCs (62–64). 
Finally, the EphA3 receptor can be readily detected in GBM-infiltrating cells 
of  monocytic origin, tumor-associated macrophages (TAM) (Figure 3). Thus, 
 collectively, IL-13RA2, EphA2, and EphA3 are expressed in several GBM com-
partments documented to be involved in tumor progression and/or resistance to 
therapies (18, 19). Of importance, ephrin-A5 (eA5) binds EphA2 and EpA3 
receptors and also the EphB2 (17, 65, 66) receptor, all present in abundance in 

Figure 3 EphA3 receptor in GBM. Immunofluorescent staining of EphA3 (red) and CD31, GFAP, 
CD68, CD163 and CD206 (green) on consecutive sections of the same GBM specimen. Nuclei 
were stained with DAPI (blue). (Adapted from Oncotarget 2016;7(37):59860–59876.)

B

C
D

31

EphA3 Merged Magnified

G
FA

P
C

D
16

3
C

D
68

C
D

20
6



Debinski W et al. 347

GBM tumors, but not in normal brain. Here, we discuss the novel idea of targeting 
all four receptors with one pharmaceutical compound. We are exploiting the 
favorable properties of our previously generated IL-13 variants and those of engi-
neered eA5, to construct a human IgG1 scaffold-based single pharmaceutical com-
pound. The multivalent compound will bind IL-13RA2, EphA2, EphA3, and 
EphB2 and deliver a catalyst(s) to GBM tumors, specifically killing tumor cells 
and abnormal cells of the tumor environment. Such an approach offers a unique 
opportunity to gain an increased access to tumor compartments of high resis-
tance, or poor availability, to current treatment modalities.

ATTRACTIVE MOLECULAR TARGETS IN GBM

We discovered the first receptor target overexpressed in most GBM patients, but 
not in normal brain: IL-13RA2 (29). IL-13RA2 is a monomeric receptor to which 
only IL-13 binds, unlike its normal tissue counterpart, IL-13RA1/IL-4A, which 
binds IL-13 and IL-4 (5) (Figure 2A). IL-13RA2 is (i) associated with GBM patients’ 
survival, (ii) expressed preferentially in a GBM mesenchymal subtype, and (iii) its 
gene, based on TCGA data, is overexpressed in 58% of patients (58; Figure 2B) 
and in the protein in up to 75% of GBM cases (35). IL-13RA2 was readily detected 
in cells isolated as GSC (59, 60) and appears to contribute to GBM cell stemness. 
For example, GBM cells selected for lack of IL-13RA2 have a significantly lower 
stem cell–like forming and tumorigenic potential (61). This observation provides 
strong rationale for treatments eliminating IL-13RA2 positive cells. IL-13RA2 may 
influence intracellular signaling (67) and may be a signaling molecule (68).

Our continuous efforts to find pharmaceutically tractable molecular targets led 
to discovery of the EphA2 receptor in GBM (31, 69–71). EphA2 belongs to the 
largest protein tyrosine kinase receptor family in eukaryotes (72–75) (Figure 2C); 
these receptors are bound by natural ligands called ephrins (Figure 2D). EphA2 is 
over-expressed in ~ 60% of patients with GBM (31, 76), but jointly with IL-13RA2 
it is over-expressed in ~90% of all GBM, while absent in normal brain (31). 
Expression of EphA2 and EphA2 correlates with glioma patients’ survival (75) (see 
also Figure 2E) (77, 78). IL-13RA2 and EphA2 exist in a significant proportion of 
locally infiltrating GBM cells, and EphA2 is overexpressed on abnormal endothe-
lium of tumor-associated vessels (52, 79). EphA2 activation by its preferred 
ligand, ephrin-A1 (eA1), induces prominent, dose-dependent inhibitory effects 
on anchorage-independent growth and invasiveness of GBM cells (79, 80). The 
EphA2/eA1 system function in GBM is complex; the receptor is oncogenic 
when ligand unactivated, but tumor suppressing when activated by eA1 (68, 69). 
EphA2 is also important for the self-renewing and tumorigenic potential of GSCs 
(62, 63). Thus, IL-13RA2 and EphA2 are attractive molecular targets for urgently 
needed targeted combinatorial therapy (31, 80, 81).

Most recently, we found that another receptor of the EphA subfamily, the EphA3 
receptor, is overexpressed in GBM (Figure 3). The gene for EphA3 was highly upreg-
ulated in G48a GBM cell tumorspheres (56) and even more so in nonpassaged GBM 
cells. Others found the EphA3 receptor is important for the self- renewing potential 
and tumorigenicity of GSCs (64). Interestingly, the distribution of EphA2 and EphA3 
receptors only partially overlaps. For example, EphA3 receptors are found in cells 
of monocytic origin infiltrating GBM (82) like TAMs (Figure 3). The difference in 
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these receptors’ distribution also agrees with the existence of multiple phenotypic 
types of GSCs (83). EphA3 often co- localized with a GSC marker Nestin in situ, in 
accordance with a recent report (64). EphA3 did not co-localize with the endothe-
lial cell marker CD31 (Figure 3). Microglia/macrophages variably infiltrate gliomas 
and contribute to the total tumor mass (82). Three markers of monocyte/macro-
phage lineage (CD68, CD163, and CD206) co-stained with EphA3 on a subpopu-
lation of cells within the tumor and surrounding the tumor neovasculature (64). 
This novel finding widens the  spectrum of GBM compartments that can be exploited 
as targets in molecular anti-GBM therapies using Eph receptors.

PROMISING TREATMENT BYPASSING THE BBB

We and others have continued to optimize CED as a minimally invasive approach 
(33–35, 84–97). This way of drugs delivery is discussed in Part II of the chapter 
(page 347). A critical therapeutic advantage in using cytotoxins via CED is that 
they cause death of targeted cells (70). Even though the GBM tumor environment 
is highly immunosuppressive (98, 99) and patients with GBM are immunosup-
pressed (100, 101), a large number of killed tumor cells provides a “danger signal” 
and evokes effective antitumor immune responses. Our published (41) and unpub-
lished observations suggested, and another study demonstrated directly (102), the 
existence of effective immune responses in preclinical studies with cytotoxic pro-
teins. Importantly, the “in situ vaccine” effect of a treatment causing cell death is 
also the principal mechanism of antitumor action when using oncolytic viruses 
delivered directly to tumors using CED (6, 103). In this approach, the virus is 
delivered only to a portion of GBM tumors through a single catheter, but cell death 
at the site and near the virus injection appears sufficient to produce readily measur-
able immune responses in patients and subsequent antitumor effects (6, 103). 
Therefore, if one cannot distribute cytotoxins perfectly throughout the whole 
tumor and its vicinity in all patients at all times, the death of most cells in tumors 
during each treatment will result in an antitumor vaccination effect meaning new 
influx of immune cells responsible for the whole mechanism of response. This 
principle is tested in other cancers like melanoma; the viral gene therapy drug, 
Imlygic, has been approved by the FDA (104). Conceivably, the addition of immune 
checkpoint inhibitors should result in potentiation of such responses (105, 106).

INCREASING DRUGS ACCESS TO TUMOR COMPARTMENTS AND 
OPTIMIZING CED FOR EFFECTIVE GBM TREATMENT

The clinical results obtained with the first generation of IL-13-based cytotoxin, 
huIL-13-PE38QQR, which is a fusion protein between a wild type IL-13 and a 
modified pseudomonas exotoxin A (PE) represent promising translational starting 
point to improve treatment of patients with GBM. Early-phase trials with huIL-
13-PE38QQR showed up to 56 weeks of median survival and a number of long-
lasting responses (107). Importantly, the efficacy trial extended the lives of 
patients with recurrent GBM by almost 50%, but the control arm had extended 
from previously observed survivals and the favorable difference did not achieve 
statistical significance (13). The ways to improve the CED are described in further 
detail in chapter 18 (page 359) and chapter 21 (Page 405).
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TARGETING EPH RECEPTORS SIMULTANEOUSLY

As pointed out above, IL-13RA2, EphA2, EphA3, and EphB2 are overexpressed, 
functionally important, and linked to survival in patients with GBM. They are all 
pharmaceutically targetable as demonstrated in preclinical and clinical studies. 
These receptors are distributed among several tumor compartments important for 
progression of GBM. Debinski’s group has long been advocating attacking GBM 
with a combinatorial approach (31, 80, 81). Given that only two modified ligands 
may be needed to generate a drug delivery system targeting all four receptors, we 
have a completely new opportunity for combinatorial therapy and highly increased 
drug access in a complex disease of dismal prognosis, with just one pharmaceuti-
cal agent.

eA5 can bind and induce internalization of the Eph receptors A2, A3, and 
EphB2. Hence, we produced a dimeric form of eA5 in a fusion with an Fc frag-
ment of human IgG1, eA5-Fc (Figure 4A) (56). We also made an eA5-Fc-
PE38QQR cytotoxin chemical conjugate (Figure 4A). eA5-Fc-PE38QQR killed 
U-251 MG, U-373 MG, and G48a GBM cells very efficiently and specifically 
(Figure 4B). The IC50 of eA5-Fc-PE38QQR was in the range of 10−11 M. To con-
firm the specificity of the cytotoxin in targeting EphA2 and EphA3, the three 
GBM cell lines were pretreated with either eA1-Fc or eA5-Fc at 10 µg/mL for 
1 h. As expected, the cytotoxin was less active on the three cell lines tested when 
pretreated with eA1-Fc, which binds only the EphA2 receptor, and completely 
lost its activity when cells were pretreated with eA5-Fc, which binds EphA2, 
EphA3, and EphB2 (Figure 4B). Even though the readings in colorimet-
ric  cell  viability assay were not reaching 100% kill, the live/dead assay (Life 
Technologies) demonstrated that vast majority of GBM cells were dead at 

Figure 4 EA5-Fc-PE38QQR kills GBM tumor cells, specifically targeting both EphA3 and EphA2 
receptors. (A) The structure of an eA5-Fc and eA5-Fc chemically conjugated to PE38QQR 
(right). Opposite arrows represent chemical conjugation. Closed small ovals represent hinge 
regions; thin straight lines represent disulfide bonds. Orange circles are the domains of PE: 
smaller = D2 and larger = Domain III. (B) Cell viability assay on GBM cell lines treated with 
eA5-Fc-PE38QQR for 48 h or pretreated with either eA1-Fc or eA5-Fc. (Adapted from 
Oncotarget 2016;7(37):59860–59876.)
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10 ng/ml of conjugate concentration and almost all were dead at 100 ng/ml of 
conjugate (56).

TARGETING EPH RECEPTORS AND IL-13RA2 SIMULTANEOUSLY

eA5-Fc interacts with EphA2, EphA3, and EphB2 receptors. To further widen the 
reach of a targeting agent, we are incorporating mutated IL-13 (IL-13M), which 
has dramatically altered reactivity toward the normal tissue receptor, IL-13RA1/
IL-4RA, but not toward the tumor-associated receptor, IL-13RA2 (41, 108–111) 
into the eA5-Fc construct (Figures 2A and 5A). The very first construct retained 
an ability to bind to the EphA2 receptor and IL-13RA2. Next, we will produce a 
chemical conjugate between eA5M-Fc-IL-13M and PE38QQR to demonstrate fea-
sibility of the QUAD-CTX approach in a direct way similarly to eA5-Fc-PE38QQR. 
We will also make conjugates of eA5-Fc-IL-13M with chemotherapeutics like 
WP936 (112). This will eliminate several potential problems related to possible 
systemic delivery of toxin-based therapeutics.

QUAD-CTX BASED ON SCFV RECEPTOR TARGETING

We are generating another type of QUAD-CTX drug candidate in which we will 
use single-chain (sc) Fv fragments of antibodies (scFv) directed individually 
against the three Eph receptors: A2, A3, and B2. It will be also based on a human 
IgG1 scaffold similarly to eA5M-Fc-IL-13M. We have already made the first step 
in generating a quadrivalent scFv(EphA2)-scFv(EphA3)-scFv(EphB2)-Fc-IL-
13M. We have produced a bivalent scFv(EphA2)-Fc-IL-13M (Figure 6A). We will 
stepwise introduce scFvs for EphA3 and EphB2 receptors (Figure 6B) with vari-
ous placement configuration and test for the exhibition of expected binding prop-
erties. Once it is made, the quadrivalent ligand will be conjugated to either 
modified toxins or a chemotherapeutic like WP936 (Figure 6C).

Figure 5 Design of a QUAD-CTX. 
(A) Schemata of eA5M-Fc-IL-13M 
in which the moieties of eA5M 
and IL-13M are targeting ligands. 
(B) Schemata of eA5M-Fc-IL-13M 
conjugated to PE38QQR. Closed 
small ovals represent hinge 
regions. Opposite arrows 
represent chemical conjugation. 
Closed small blue ovals 
represent chemotherapeutic. 
Filled triangles represent 
chemotherapeutic. Orange 
circles are the domains of PE: 
smaller = D2, and larger = 
Domain III.

eA
5M

IL
-1

3M

IL
-1

3M

IL
-1

3M

IL
-1

3M

CH2

A B

CH2

CH3 CH3 CH3 CH3

CH2 CH2

eA
5M

eA
5M

eA
5M



Debinski W et al. 351

Conclusion

We have discussed our idea to target the three molecular targets that we identi-
fied in GBM: IL-13RA2, EphA2, and EphA3, and yet another receptor, EphB2 
that are specifically overexpressed on GBM tumor cells as well. We are develop-
ing a cytotoxic drug of highly unique properties that can recognize four recep-
tors, QUAD-CTX. Also, because virtually all GBM patients have these receptors 
in abundance, prescreening patients for this treatment may not be necessary. 
Thus, our new design will increase drug access to hard-to-target GBM compart-
ments believed to be responsible for dismal prognosis of the disease. Thus, 
despite significant obstacles in drug delivery to GBM and the high complexity 
and heterogeneity of GBM, an off-the-shelf drug used as monotherapy can repre-
sent an effective combinatorial therapy approach using both passive and active 
immunotherapy.

Acknowledgment: This work was supported by NCI R01 CA74145, R01 
CA139099, P01 CA 207206 and Thomas K. Hearn, Pratto, Dallas Ray Swing, and 
JS Farmer III Family Funds for Brain Tumor Research. 

Figure 6 Construction of a QUAD-CTX based on scFvs. (A) Bivalent scFv(EphA2)-Fc-IL-13M 
construct. (B) Schemata of a quadrivalent scFv(EphA2)-scFv(EphA3)-scFv(EphB2)-Fc-IL-13M 
construct. (C) Schemata of a quadrivalent scFv(EphA2)-scFv(EphA3)-scFv(EphB2)-Fc-IL-13M 
chemical conjugate with toxic load. Closed small ovals represent hinge regions; thin straight 
lines represent disulfide bonds. Opposite arrows represent chemical conjugation. Closed 
small blue ovals represent either toxins or chemotherapeutic.
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