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Abstract: Gliomas are the most common intracranial tumors in humans. The 
most malignant among these tumors is glioblastoma (GBM), with an incidence 
of 3–5 out of 100,000 persons in Western countries. GBM arises either de novo 
(primary GBM) or develops from a lower grade glioma (secondary GBM). The 
prognosis is poor. GBMs are lethal tumors and even optimal surgical resection, 
followed by chemotherapy and irradiation, results in a median survival of about 
12–15 months. One characteristic that is responsible for GBM malignancy, and 
its worse prognosis, is the highly infiltrative growth of GBM cells into the healthy 
brain. GBM cell migration and invasion is a very complex process that is regu-
lated by several factors, which include changes in the migrating cell itself as well 
as the tumor microenvironment. This chapter provides an overview of routes of 
invasion of glioma cells, the signaling pathways that drive glioma cell motility, 
and the processes through which glioma cells modulate their surrounding 
environment.
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Introduction

Glioblastoma (GBM), the most malignant brain tumor, has a complex biology, 
and despite decades of research, much is still unknown. GBM separates itself from 
lower grade gliomas by exhibiting central necrosis and microvascular proliferation. 
It is characterized by a rapid and highly infiltrative growth. In GBM, extracranial 
metastases are extremely rare; tumor cell invasion and migration are the main 
features of GBM spreading (1). The invasive nature of GBM leads to local destruc-
tion of healthy tissues, and is the main source of recurrence (2). Even with the 
best imaging methods available, it is difficult to detect cells that had migrated 
away from the primary tumor. Glioma cells are able to migrate far away from the 
original tumor and can even cross into the contralateral hemisphere making 
complete surgical resection of GBM impossible (3). Invasion of glioma cells into 
the healthy brain also leads to the escape of these cells from irradiation and 
chemotherapy. Therefore, understanding the biology of glioma cell motility is of 
great importance for developing novel therapeutic approaches to treat GBM 
patients.

Glioma cells mainly use two routes to invade the healthy brain: the perivascu-
lar space around blood vessels and axons (4). Whether glioma cells exclusively 
use one route over the other, or whether other roads are also utilized, is not fully 
understood. In addition, it is not known how glioma cells decide to choose one 
pathway over the other for invasion. There are several cellular and environmental 
requirements that set the stage for a glioma cell to move. For example, migrating 
cells show changes in energy metabolism that are often induced by hypoxic con-
ditions (5, 6). Cytokines, chemokines, nutrition deprivation, and hypoxia lead to 
changes in the expression of transcription factors (TFs), and subsequently to 
altered protein expression (7). In this regard, differential expression of ion chan-
nels, neurotransmitters, proteases, chemokines, and cytokines has been described 
in moving versus resting glioma cells (2). Besides transcriptional changes, the 
cytoskeleton of the glioma cell has to be rearranged to allow cell movement, cell 
adhesion has to be reduced, and the tumor cell has to be shrunk to fit into the 
small perivascular space. Furthermore, the extracellular matrix (ECM) has to be 
remodeled or destroyed to allow glioma cell invasion (8). Even the interaction of 
glioma cells with adjacent nonneoplastic cells like astrocytes or endothelial cells is 
important for glioma cell migration (9, 10). This chapter gives an overview of dif-
ferent processes and mechanisms glioma cells use to migrate and invade, and the 
signaling cascades that regulate the motility of glioma cells.

Infiltration of Diffuse Glioma

Patterns of glioma cell infiltration

Glioma cells infiltrate into the healthy brain parenchyma using preexisting struc-
tures like blood vessels or myelinated nerve fibers of white matter tracts, both of 
which present high mechanical rigidity (11, 12). ECM stiffness is a major regulator 
of cell motility. The movement of cells toward a more rigid ECM area is called 
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mechanotaxis (13). A more rigid ECM, as in the perivascular space, promotes 
glioma cell migration (14). Stiffness varies with the grade of glioma. It is known 
that invasive GBM produces stiffness-promoting factors like collagen, fibronectin 
(FN), and laminin. Furthermore, glioma cells overexpress components of the basal 
membrane of the cerebral vasculature, for example, tenascin (TN)-C, which is 
associated with glioma progression (15). Glioma cells are recruited to the perivas-
cular space around blood vessels by chemoattractants like bradykinin, which is 
produced by endothelial cells (16). Also, overexpression of chemokine receptors 
on glioma cells has been associated with perivascular invasion (17). Cell move-
ment along white matter tracts, a second known route of glioma cell invasion, is 
mediated by a variety of proteins called axonal guidance molecules (see the section 
“Axonal Guidance Molecules”), which act as attracting or repelling factors.

Hypoxia

The center of GBM is characterized by necrosis, surrounded by an area where 
tumor cells deal with hypoxia and nutrient starvation. Around the necrotic 
region, the population of “pseudopalisading” cells become prominent. These gli-
oma cells activate migratory processes in an attempt to escape hypoxia and to 
reach oxygen-rich areas adjacent to blood vessels (18). Some of the pro-migratory 
and pro-invasive factors produced or activated in response to hypoxic conditions 
include: metalloproteases like MMP-9, A Disintegrin, and Metalloproteinase 
(ADAM)-17 (19, 20); galectins (21); epithelial to mesenchymal transition (EMT) 
transcriptional regulators like SLUG and SNAIL and the zinc-finger E-Box-
binding homeobox proteins ZEB-1 and ZEB-2 (22, 23); and CXCR4 and CXCR7, 
the latter mediating glioma cell migration toward stromal-derived factor 
(SDF)-1a/CXCL12 (24, 25).

The “Go or Grow” of tumor cells

Migration and proliferation of glioma cells are mutually exclusive. This phenom-
enon, called “Go or Grow,” was first discovered in astrocytoma cells, where prolif-
eration and migration are timely separated (26). The “Go or Grow” is modulated 
by changes in the microenvironment like hypoxia or nutrient depletion, which 
prompts a tumor cell to “Go” in order to reach a more favorable environment and 
re-settle there, or to “Grow” if the environment provides enough oxygen and 
nutrients. The pentose phosphate pathway (PPP) is mainly used during prolifera-
tion, and glycolysis is used as the energy source during migration (5). Other 
parameters that influence the “Go or Grow” of glioma cells are the cell volume, 
cytoskeleton dynamics, and the ECM composition (27). Differential activation of 
TFs has been reported: increased NF-kB activity in migrating cells, and c-myc in 
proliferating cells (28). Also, changes in miRNAs expression modulate the “Go or 
Grow”: elevated miR-451 expression is associated with a shorter GBM patient 
survival and higher proliferation (29), whereas mir-9, being highly expressed in 
glioma cells, inhibits proliferation but promotes migration (30). Understanding 
the process of “Go or Grow” in glioma is of central importance since it is known 
that ionizing irradiation used for the treatment of GBM promotes the “Go” and 
thereby the invasive phenotype of glioma cells (31, 32).
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Extracellular Matrix

ECM constitutes 10–20% of brain volume. It is produced by the surrounding 
cells. ECM not only has a structural function but also a major role in brain 
development, cell survival, migration, maturation, differentiation, and tissue 
homeostasis (33, 34). The main components of the brain ECM are proteogly-
cans, hyaluronan, link-proteins like TN-C, and others (Figure 1) (35). Another 
ECM type in the brain is the basement membrane that covers blood vessels and 
is part of the perivascular space. Deregulated ECM dynamics is a hallmark of 
cancer. The ECM of glioma differs from that of the healthy brain. Whereas uni-
versal ECM components are expressed uniformly in healthy brains (36), in 
high-grade glioma fibrous proteins and laminin are upregulated (15, 37). 
Besides, the interaction of the ECM component hyaluronan with its receptor 
CD44, both being overexpressed in glioma cells, is a major requirement for 
glioma invasion (38–40). For glioma cells to invade the healthy brain tissue, the 
intact ECM has to be destroyed and remodeled. ECM degrading and remodel-
ing enzymes include several MMPs, A Disintegrin and Metalloproteinase with 
Thrombospondin Motifs (ADAMTS), the serine protease plasmin, 6-O-sulfatases, 
heparanases, cathepsins, and urokinase (uPa). These enzymes are not only regu-
lated at the transcriptional and translational levels but also post-translationally 
by their functionally inhibitory pro-domains or by selective natural proteinase 
inhibitors (41).

Figure 1  Mechanisms involved in the migration and invasion of glioblastoma (GBM). The 
migrational phenotype of GBM cells is regulated by a complex interplay of different factors, 
signaling cascades, as well as cellular and environmental features.
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Matrix-metalloproteinases

MMPs are a family of secreted or membrane-anchored endoproteinases (42). Their 
main function is the degradation and remodeling of the ECM. MMP expression in 
the normal brain is low. In glioma, MMPs are overexpressed or activated. MMP-2 
and MMP-9 are of interest for invasive processes in gliomas as their expression 
correlates with tumor grade and progression (43, 44). MMP-2 and MMP-9 con-
vert latent pro-migratory transforming growth factor (TGF)-β into its active form, 
which in turn induces MMP-2 in a feedback loop (see the section “The Role of 
TGF-β in Glioma Cell Motility” (45–47)). MMP-9 expression or activity can be 
regulated by: activation of signal transducer and activator of transcription (STAT)3; 
epidermal growth factor (EGF); FN; vitronectin (VN); interleukin (IL)-1b; tumor 
necrosis factor (TNF)-a; and TGF-b (47–52). Furthermore, glioma cells exploit 
MMP-14 that is expressed by surrounding microglia cells (53). MMP-14 activates 
MMP-2 by cleaving its pro-peptide (54, 55). Furthermore, MMP-3, -7, -12, -13, 
-16, -19, and -26 are also highly expressed and mostly associated with enhanced 
glioma invasion (56–63). MMPs are inhibited by the four tissue inhibitors of 
metalloproteinases (TIMP), TIMP-1–4. They inhibit all MMPs but also have other 
functions including MMP activation. TIMP-2 can form a ternary complex with 
pro-MMP-2 and MMP-14 that is necessary for efficient MMP-2 activation (55, 64). 
High TIMP-1 levels and TIMP-3 silencing are associated with a poor prognosis for 
glioma patients (65–68). Due to these paradoxical effects, the important role of 
TIMPs in glioma invasion remains elusive.

Integrins—The link between the ECM and cells

Integrins are catalytic inactive heterodimeric transmembrane glycoproteins 
responsible for cell–ECM interactions. They are the link between the ECM and the 
cytoskeleton and important for signal transduction. To date, 24 integrins com-
posed of different combinations of 18 a- and 8 b-subunits have been identi-
fied (69). The a/b combination determines ligand specificity. Typical ECM ligands 
for integrins are laminin, collagen, and FN, which are part of the basement mem-
brane in the brain and are expressed by high-grade gliomas (70). Other integrin 
ligands are thrombospondin (TSP), osteopontin (OPN), VN, and TN-C, all being 
overexpressed in gliomas. Upon ligand binding, integrins form clusters, leading to 
activation of the focal adhesion kinase (FAK) and finally to enhanced migra-
tion (71). FAK is active and overexpressed in gliomas, and its expression corre-
lates with the tumor grade (72–74). Upon integrin clustering, the cytoplasmic 
domain attaches to cytoskeletal components to form focal adhesion points at the 
leading edge of migrating cells (75). This adhesion points give cells a polarity 
which enable them to move forward. In GBM, integrin b1 is overexpressed and is 
associated with migration (76, 77). Integrin a9b1 expression correlates with gli-
oma grade and influences MMP-9 expression (78, 79). Furthermore, integrin 
a5b1 can stimulate MMP-2 expression upon interaction with angiopoietin (80). 
In addition, integrin avb3 and avb5 expression is associated with disease 
progression. Both can bind to the latency-associated peptide (LAP) of the LAP-
TGF-β complex and thereby release active TGF-b (81, 82). In summary, integrins 
are substantial for glioma cell migration, establishing the link between the brain 
ECM and the tumor cells (Figure 1).
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Chondroitin sulfate proteoglycans, 
Glycoproteins, and Galectins

One important class of proteoglycans are chondroitin sulfate proteoglycans 
(CSPG), which are overexpressed in glioma and associated with increased glioma 
invasion (83). A subgroup of CSPG, the lecticans, forms tertiary complexes with 
hyaluronan and TN-R. Three of them, versican, BEHAB/brevican, and neurocan, 
are overexpressed in glioma and enhance glioma motility (84–86).

Invasion-promoting ECM glycoproteins secreted in glioma are: Secreted 
Protein Acidic and Rich in Cysteine (SPARC); TN-C supporting cell adhesion 
through integrin binding; OPN and VN (87–90). In addition, TSP-1, a multifunc-
tional matrix glycoprotein, is implicated in cell adhesion, migration, invasion, and 
activation of TGF-β (91; see the section “The Role of TGF-β in Glioma Cell 
Motility”). Galectins are soluble lectins with specificity for b-galactoside which 
allow them to bind to proteoglycans and glycoproteins in the brain ECM (92). In 
malignant gliomas, galectin-1, -3, and -8 are overexpressed and promote glioma 
cell migration and invasion by modulating the actin cytoskeleton (93–96).

Migration-Associated Changes of the Cytoskeleton

Cell migration is a multistep process initiated by binding of chemoattractants or 
pro-migratory factors to cell surface receptors, followed by the activation or inac-
tivation of diverse small GTPases and cytoskeleton reorganization (97). The 
resulting structures are called filopodia, lamellipodia, and podosomes. Turnover 
of adhesion site formation at the cell front and disruption at the rear is essential 
for cell movement (98).

Small GTPases

The most important and well-characterized small GTPases associated with 
cytoskeletal remodeling are: RhoA, which is responsible for coordination of con-
tractility at the cell body and cell rear; RAC-1 that regulates protrusion formation 
at the leading edge; and CDC42 that modulates cell polarity (99). RAC-1 protein 
levels correlate with tumor grade in astrocytomas. In addition, RAC-1 is hyperac-
tivated in GBM (100). Enhanced activity of CDC42 and RAC-1 has been reported 
in infiltrating glioma cells (101). Migration-associated small GTPase activity is 
regulated by a variety of factors and signals. Rho GTPase activity is mediated by 
several receptors and effectors. In GBM, two members of the TNF receptor super-
family act through RAC-1: TNF-like weak inducer of apoptosis (TWEAK) and 
TNF receptor superfamily member 19 (TROY) (99, 102). EGFRvIII, a truncated 
and constitutively active EGF receptor, and Platelet Growth Factor Receptor alpha 
(PDGFRα) activate RAC-1-mediated migration through tyrosine protein kinase 
SRC-dependent DOCK180 phosphorylation (103, 104). RAC-1 is also activated 
by the IQ-domain GTPase-Activating Protein (IQGAP)-1/ADP-Ribosylation Factor 
6 (ARF6), neurotensin, and ephrinB3 signaling (105–107). RAC-1 activity is fur-
ther modulated by CDC42 (104, 108) as well as by axonal guidance molecules 
(see the section “Axonal Guidance Molecules”). RhoA activity correlates with 
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increased glioma cell migration. Functional evidence for the role of RhoA has 
been demonstrated via inhibition of the RhoA effector ROCK, which leads to 
enhanced invasion due to the fact that ROCK, together with mDia, coordinates 
stress fiber formation and focal adhesion, thereby exacerbating migration. The 
activity of Rho and RAC GTPases is tightly regulated by three main proteins: gua-
nine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and 
guanine nucleotide dissociation inhibitors. Many GEFs (e.g., Ect2, ARHGEF7 
[βPIX], SWAP, SGEF, Vav3, Trio, Dock180, and Dock9) have been correlated with 
glioma pathology, higher tumor grade, and glioma invasion, in particular when 
co-localized with small GTPases (99).

Actin rearrangement, adhesion complexes, 
and cellular protrusions

Nonmotile cells show nonpolarized cell morphology. In these cells, the machin-
ery for actin filament and protrusions formation is inactive. Protrusion formation 
and actin polymerization requires, besides actin, at least six other proteins: the 
Arp2/3 complex; an Arp2/3 complex-activating nucleation promoting factor 
(NPF); a barbed-end capping protein; cofilin and profilin, the latter binding both 
ADP-bound and ATP-bound actin monomers (109). Lamellipodia are flat, 
branched, sheet-like actin membrane protrusions that drive cell migration by 
attaching to the substrate and generating force at the leading edge. Filopodia are 
thin, finger-like projections beyond the lamellipodial edge, composed of long, 
bundled, and unbranched actin filaments. No Arp2/3 complex or cofilin are 
present in filopodia. Invadopodia/podosomes are ventral membrane protrusions 
responsible for ECM degradation with a not yet well-characterized actin organi-
zation (98).

The Wiskott–Aldrich Syndrome (WASP) family consists of two principal 
classes of proteins: WASPs and SCAR/WAVEs. WASP/N-WASP induces invadopo-
dia and podosome formation, while WAVEs are key regulators of lamellipodia. 
Cofilin, involved in de-polymerization and polymerization of actin filaments, is 
highly expressed in migrating GBM cells. It is phosphorylated and inactivated by 
LIM1/2 kinase. For proper migration and protrusion formation, cofilin and LIM 
kinase activity must be perfectly balanced. Invadopodia formation is dependent 
on the activity of cortactin, an actin-binding protein (98).

During cell movement, focal adhesion complexes (FACs) are formed to con-
nect the rearranged actin cytoskeleton to the ECM. While integrin clustering is the 
first step for FAC formation, microtubule extension promotes FAC disruption. 
Several studies reported a transport of integrins from the rear to the front of the 
cell during migration, maintaining the focal adhesion turnover. The presence of 
large focal adhesions creates more links to actin stress fibers and makes cell move-
ment more difficult (110). The molecular structure of FAC includes integrins, 
intracellularly bound to paxillin and talin, which subsequently recruit FAK and 
vinculin. FAK then phosphorylates alpha-actinin, leading to cross-links with actin 
filaments. The resulting structures lead to alterations of the cell morphology and 
the generation of traction force necessary to move the cell body. Recent reports 
indicate that focal adhesion protein expression, like talin and alpha-actinin, 
is related to the invasiveness of glioma cells (111).
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Ion Channels and Their Contribution to Glioma Cell Migration

Autocrine glutamate signaling

Gliomas express glutamate receptors (GluRs) like a-amino-3-hydroxy-5-methyl-
isoxazole-4-propionic acid receptors (AMPAR), N-methyl-D-aspartate (NMDA) 
receptors, and metabotropic mGluRs. AMPARs are composed of four types of 
subunits: GluR1–4. Through autocrine glutamate signaling, they contribute to 
enhanced glioma cell invasion (112, 113). The subunits, especially GluR2, influ-
ence the cation permeability of AMPAR. In the presence of GluR2, the channel is 
Ca2

+
 impermeable, the situation in the mature and healthy brain (114, 115). In 

glioma, GluR2 is not expressed, leading to high Ca2
+
 permeability (116, 117). 

Artificial GluR2 overexpression in glioma cells inhibits migration (117, 118). 
Overexpression of GluR1 positively correlates with glioma cell adhesion to collagen, 
whereas stimulation of AMPAR leads to detachment from the ECM. In a mouse 
glioma model, overexpression of GluR1 results in enhanced invasion of glioma 
cells into the perivascular space similar to patterns described in human GBM.

Hydrodynamic model of glioma cell migration

Glioma cells migrate through the extracellular space in the brain. To aid such migra-
tion, they reduce their volume by more than 30% by releasing cytoplasmic 
water (119). For this purpose, glioma cells exploit ion channels which normally func-
tion as membrane potential regulators (Figure 1). Unlike adult neurons, glioma cells 
have high intracellular Cl− levels (120). This is due to the constitutive expression and 
prolonged activity of the Na+/K+/Cl− cotransporter 1 (NKCC1) that correlates with 
glioma grade and invasiveness (121). Upon opening of Cl− channels, the outflow of 
Cl− is accompanied by the efflux of water through aquaporins due to osmotic forces, 
leading to volume shrinkage. In glioma, the chloride channels ClC-2 and ClC-3 are 
functionally expressed, and blocking them reduces glioma migration (122–124).

The K+ gradient, regulated by Na+/K+-ATPase, is essential for invasion (125). 
The KCa family of Ca2

+
-activated K+ channels, especially KCa3.1, is overexpressed 

in 32% of the glioma patients, and its expression correlates with patient sur-
vival  (126). KCa3.1 is localized at the leading edge of migrating cells, and its 
inhibition results in reduced migration (127, 128). The bradykinin receptor 
B2 (B2R) is also expressed at the leading edge of migrating glioma cells. It is a criti-
cal attractor of glioma cells toward the vasculature, and an activator of ion chan-
nels (127, 129). Binding of bradykinin to B2R leads to increases in intracellular 
Ca2

+  which induces the opening of the KCa3.1 and ClC-3 channels, resulting in 
the efflux of Cl−, K+, and water (16, 127, 130). As a result, the glioma cells shrink 
which enable them to migrate through the narrow space of the brain.

Axonal Guidance Molecules

Glioma cell movement can also occur along myelinated neuronal axons of white 
matter tracts. A multitude of proteins act as axonal guidance molecules by either 
attracting or repelling axonal growth cones and modulating neural cell motility 
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during development (Figure 1). The most prominent axonal guidance molecules 
are: ephrins (Eph); netrins; Slits and their roundabout (Robo) receptors; sema-
phorins (Sema) and their receptors plexin and neuropilin (NRP) (131).

Ephrins

Ephrins serve as ligands of ephrin receptors (EphRs), a family of proteins contain-
ing nine EphR class A and five EphR class B members. Interaction of Eph and 
EphR regulates cell–cell interaction by forward (Eph to EphR) or reverse (EphR to 
Eph) signaling. Eph regulates cell migration, adhesion, morphology, differentia-
tion, proliferation, and survival through Jun-N-terminal kinase (JNK), STAT3, 
PKB/AKT, Rho GTPase, and paxillin pathways. Recent studies have detected an 
abnormal expression of EphB1 receptors in brain tumors (132). Eph proteins 
have a dual role in glioma cell migration: negative regulation that inhibits migra-
tion and positive regulation that promotes migration (133, 134). Therefore, it 
could be postulated that these proteins might serve as regulators of the “Go or 
Grow” behavior of GBM.

Netrins and Slit/Robo

Netrins are a family of laminin-related proteins. Netrin-1, the most prominent 
representative of the netrin family, is widely expressed in fetal and adult brain 
tissues. Its expression is associated with progression of various types of human 
cancers. Netrin-1 binds to UNC5-family dependence receptor (DR) deleted in 
colorectal cancer (DCC), or other UNC5 molecules. While the absence of netrin-1, 
DCC/UNC induces apoptosis, the absence of the DRs or enhanced netrin-1 
expression is tumorigenic. Netrin expression is associated with poor patient prog-
nosis in lower grade gliomas. In GBM cells, elevated netrin expression activates 
notch signaling, finally resulting in the gain of stemness and enhancement of 
invasiveness of these cells (135).

Slit (Slit 1–3) and the Robo receptor family proteins are evolutionarily 
conserved molecules. During normal development, secreted Slit proteins regu-
late axon guidance and neuronal precursor cell migration by mediating chemo-
repulsive signals on cells expressing Robo. In glioma, Slit2 and Robo1 provide 
different patterns. By hypermethylation of its promoter, the expression of Slit is 
low in most gliomas (136), whereas the expression of Robo1 is high. Slit2/Robo1 
signaling inhibits glioma cell migration and invasion by inactivation of CDC42 
signaling. In vivo, Slit-2 mitigates infiltration of glioma cells into the healthy brain 
(137), indicating that a chemo-repulsive signal transmitted by the interaction of 
Slit2/Robo1 participates in glioma cell migration or guidance (138).

Semaphorins and their receptors

Semaphorins (Sema), originally identified as guidance molecules that navigate 
axon growth in the brain, fall into eight subclasses of secreted, membrane-
anchored, and transmembrane proteins (139). Class 3 semaphorins (Sema3) 
transfer their function through a receptor complex consisting of plexins and neu-
ropilin (NRP)-1 and -2 (140, 141). Downstream signaling of Sema involves RhoA, 
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RAC-1, and cofilin, leading to the reorganization of the cytoskeleton (142). 
In GBM cells, inactivation of RhoA by Sema3F leads to the collapse of the cyto-
skeleton, whereas inhibition of Sema3F promotes cell motility (143, 144). Similar 
effects have been observed for Sema3G (145), and higher expression of Sema3G 
in GBM patients has been associated with a better prognosis (146). While Sema3A, 
3B, and 3F show antitumorigenic properties in many cancers, other Sema3 family 
members are associated with tumor progression. Overexpression of Sema3C pro-
motes cell invasion of prostate cancer cell lines, whereas enhanced expression of 
Sema3E induces metastasis in lung cancer (147, 148). Regarding this dual func-
tion of semaphorins, it should be kept in mind that the signaling complexes of 
Semas and their Robo receptors as well as the downstream signaling cascades that 
are modulated by Semas are complex and interconnected, which then might 
finally determine whether they work in a pro- or anti-migratory fashion.

The Role of TGF-β in Glioma Cell Motility

The TGF-β superfamily of cytokines consists of TGF-β 1–3 which are master 
regulators of inflammation and cell differentiation. They play a key role in tumor 
progression and metastasis (149). After binding to the TGF-β receptor (TGFβ-R)-I, 
TGFβ-RII is phosphorylated. This in turn phosphorylates SMAD2/3, which then 
combines with SMAD4. This complex translocates to the nucleus and regulates 
gene expression (150). TGF-β is heavily secreted by glioma cells in vitro and 
in vivo. TGF-β promotes a mesenchymal phenotype in GBM cells, enhancing inva-
sion and migration in vitro, and in an orthotopic mouse model (151). TGF-β also 
stimulates the production of reactive oxygen species (ROS), and activates ERK1/2, 
JNK, and NFκB. NFκB finally upregulates the expression of MMP-9 (152). Other 
mechanisms of TGF-β influencing the ECM and promoting migration include the 
upregulation of integrin αvβ3 and the versican isoforms V0/V1 (84, 153). 
Furthermore, TGF-β suppresses phosphatase and tensin homolog (PTEN) in 
glioma cells through enhanced miR10a/b expression (154). In patient samples, 
TGFB1I1 (TGF-β1-induced transcript 1) expression was found to be correlated 
with tumor grade, and activation of EMT pathways (152). In reaction to radiation 
treatment, the invasion capability of glioma cells is enhanced and TGF-β is upreg-
ulated. This suggests a role for TGF-β in treatment resistance (155).

EMT-Like Processes

EMT is a process by which epithelial cells lose their polarity and cell–cell adhesion, 
resulting in a mesenchymal phenotype characterized by enhanced motility, chemo-
resistance, and stem-like properties. EMT is involved in various biological func-
tions such as wound healing, embryonic development, and fibrosis (156). In 
epithelial carcinoma, EMT is a well-established driver of invasion and metastasis 
(157), and even though gliomas are nonepithelial tumors, EMT-like processes have 
been described (158). Among the signals that have been shown to induce EMT in 
glioma are TGF-β, EGF, and Hypoxia-Inducible Factor (HIF; Figure 1) (159).
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TWIST, SNAIL, SLUG, and ZEB

TWIST1 and TWIST2 are helix-loop-helix TFs involved in EMT during develop-
ment and cancer progression (160). In glioma, TWIST was found to be a possible 
prognostic marker, and its expression correlates with tumor grade (161, 162). 
TWIST overexpression promotes invasion of glioma cells in vitro and in ortho-
topic glioma xenotransplants in vivo by inducing the expression of EMT-associated 
genes like MMP-2 and FN-1. The SNAIL family of transcriptional repressors 
consisting of SNAIL/SNAI1 and SLUG/SNAI2 is known to drive invasion and 
metastasis in various carcinomas (163). SNAIL binds to E-box DNA sequences of 
genes related to an epithelial phenotype through carboxy-terminal zinc-finger 
domains, thereby suppressing their expression. Knockdown of SNAIL in glioma 
cells by siRNA diminished glioma migration and invasion (164, 165). In GBM, 
the Rho family GTPase (RND)-3 has been shown to promote the degradation of 
SNAIL in vitro and in vivo, while downregulation of RND3 strongly induces 
SNAIL expression and migration (166). SLUG expression was found to correlate 
with histologic grade and invasive phenotype in glioma, whereas knockdown of 
SLUG attenuated invasion and prolonged survival in an intracranial mouse 
model (167).

The TFs Zinc-finger E-box Binding homeobox proteins (ZEB)-1 and -2 also 
bind to E-boxes of DNA sequences, thereby repressing cell polarity-associated 
genes such as E-cadherin/CDH1, cell–adhesion molecules, and stemness-inhibiting 
miR-200 (168, 169). In GBM patients, ZEB-1 overexpression correlated with poor 
overall survival. Glioma cells implanted in mice brain were less invasive after 
knockdown of ZEB-1. ZEB-1 and PDGFRα were found to be co-expressed in tissue 
samples from GBM patients, while high expression of both ZEB-1 and activated 
PDGFRα was identified to significantly coincide with poor survival. The same 
study further established Protein Tyrosine Phosphatase/Nonreceptor type (PTPN)-1 
as a regulator of ZEB-1-induced and PDGFR-induced EMT in glioma (170). EMT 
may also be directly promoted by the microenvironment of GBM. Both the hypoxic 
marker HIF1α and ZEB-1 were shown to colocalize in hypoxic areas of human 
GBM. In glioma cells, the suppression of HIF1α negatively affected the level of 
ZEB-1 (22). ZEB-2 was overexpressed in glioma tissue samples compared to healthy 
brain tissue, and higher expression of ZEB-2 correlated with glioma pathology 
grading. Knockdown of ZEB-2 showed an upregulation of E-cadherin, whereas 
N-cadherin and SNAIL were repressed (171).

Cadherins

Cadherins are Ca2
+
-dependent transmembrane molecules with an important role 

in cell to cell adhesion, recognition, and signaling (172). In epithelial cancers, the 
loss of E-cadherin and an increased expression of N-cadherin, the so-called “cad-
herin switch,” is considered to be a hallmark of EMT (173). In tissues of GBM and 
healthy brain, the expression of E-cadherin is generally only marginal (174, 175). 
However, in a minor subset of GBM showing epithelial differentiation, high 
expression of E-cadherin is observed, correlating with poorer clinical outcome 
compared to GBM with low or no E-cadherin expression. Glioma cells with high 
E-cadherin expression show greater invasion when orthotopically implanted 
in  mice (176). In contrast to its role in carcinoma, N-cadherin is frequently 
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downregulated in GBM compared to the healthy brain (177, 178). N-cadherin 
overexpression has been shown to decrease glioma invasion in vitro and in 
vivo (179). Interestingly, the role of N-cadherin in glioma is postulated not only to 
be determined by its expression level but also by its distribution in the cell mem-
brane (180). ZEB-1 knockdown in GBM cells showed a loss of invasiveness and 
concentration of N-cadherin to the juxtaposed membranes between adjacent 
cells; the axon-guidance molecule Robo-1 mediated by ZEB-1 can reverse this 
process by severing the anchorage of N-cadherin to the cytoskeleton (181).

Conclusion

Migration and invasion of glioma cells in the brain follow different migratory 
routes. It is a complex process regulated by the surrounding environmental condi-
tions, and interconnected by diverse signaling cascades. Understanding the pro-
cess of migration and invasion of glioma cells is of central importance since these 
characteristics make GBM aggressive and complete resection impossible. 
Identifying the molecular mechanisms that govern the motility of GBM cells will 
help develop new therapeutic strategies to treat this deadly tumor.
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