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Abstract: Glioblastoma (GBM, WHO grade IV astrocytoma) is among the most 
common adult brain tumors and one that is invariably fatal. GBM is classified as 
either primary (de novo) or secondary in origin. Secondary GBMs are derived 
from previously lower grade (WHO grades II or III) gliomas. While secondary 
GBMs present with similar clinical characteristics as their primary counterparts, 
the molecular pathways involved in their pathogenesis distinguish the two and 
have functional consequences for their behavior. Although a large number of his-
tologic markers are routinely utilized to distinguish primary from secondary 
GBM, advances in genomic and bioinformatics techniques have drastically 
improved classification of high-grade gliomas and our understanding of the 
molecular pathways that influence tumor behavior and response to treatment. 
The significant influence of molecular identity on tumor behavior has been recog-
nized by the most recent WHO classification of CNS tumors, wherein specific 
molecular markers have been integrated as part of tumor subtype identification 
process, as a supplement to traditional histological analysis. Indeed, the change 
heralds a new era for neuro-oncology, one that is moving toward targeted 
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therapeutics as part of the standard of care. Thus, a comprehensive grasp of this 
diverse landscape is necessary. In this chapter, we provide an overview of our lat-
est understanding of the molecular diversity of GBM, specifically as it pertains to 
primary and secondary GBMs, and how it influences prognostication and thera-
peutic decision-making.

Key words: Alpha thalassemia/mental retardation syndrome X-linked (ATRX); 
Isocitrate dehydrogenase (IDH); Low-grade glioma; Secondary glioblastoma

Introduction

Glioblastoma (GBM, WHO grade IV astrocytoma) is the most common malig-
nant primary brain tumor among adults. Despite aggressive therapy, the current 
median survival is approximately 15 months (1). In addition to the diffusely 
infiltrative nature of these tumors, which prevents complete surgical resection, 
tumor recurrence and ultimate patient demise is also largely attributed to the 
significant molecular and cellular heterogeneity of these lesions, which inevita-
bly results in treatment resistance and tumor recurrence. GBMs are further clas-
sified into primary (de novo) and secondary tumors that, while they present 
with similar clinical characteristics, are derived from previously lower grade 
(WHO grades II or III) gliomas. While both categories are diffuse in nature, the 
molecular pathways involved, along with functional tumor behavior, treatment 
strategy, and clinical outcomes are different (2, 3). Although clinical and imag-
ing biomarkers can be used to distinguish primary from secondary GBM, 
advances in genomic and bioinformatics techniques have drastically improved 
classification of high-grade gliomas and our understanding of the molecular 
pathways that influence tumor behavior and response to treatment. The signifi-
cant influence of molecular identity on tumor behavior has been recognized by 
the most recent WHO classification of CNS tumors, wherein specific molecular 
markers have been integrated as part of tumor subtype identification process, 
as  a supplement to traditional histological analysis (4). Indeed, the change 
 heralds a new era for neuro-oncology, one that is moving toward targeted thera-
peutics as part of the standard of care. Thus, a comprehensive grasp of this 
diverse landscape is necessary. In this chapter, we provide an overview of our 
latest understanding of the molecular diversity of GBM, specifically as it pertains 
to primary and secondary GBMs, and how it influences prognostication and 
therapeutic decision-making.

Distinguishing Primary and Secondary GBMs

Primary and secondary GBMs are histologically indistinguishable. Historically, 
the distinction between the two has been based on clinical history. With a more 
 in-depth understanding of the genetic, epigenetic, and molecular profile of these 
tumors, however, the distinction has become clearer (Table 1) (5).
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EpidEmiology of sEcondary gBm

The incidence of secondary GBMs based on clinical and imaging criteria is 
 somewhat lower than that estimated by isocitrate dehydrogenase (IDH) status 
(5% vs. 6–13%, respectively) (2, 6, 7). Furthermore, patients with a clinical diag-
nosis of secondary GBM are on average 17 years younger than those with primary 
GBM (2, 7); this bias toward a younger patient cohort correlates very closely with 
IDH1 status, as patients with IDH mutations are substantially younger (8, 9). The 
clinical course is substantially longer in patients with IDH-mutant GBM, indica-
tive of a less aggressive behavior (2, 6, 8).

anatomic prEvalEncE of sEcondary gBm

Interestingly, IDH-mutant GBM has a predilection for the frontal lobe and 
 typically present with seizure rather than neurological deficit. The same has been 
demonstrated for IDH-mutant Grade II astrocytomas and oligodendrogliomas, 
including tumor with 1p/19q co-deletion (10). These findings support a hypoth-
esis that the precursor cell of origin among IDH-mutant tumor subtypes is shared, 

TaBle 1 Key Characteristics of IDH-Wildtype and IDH-
Mutant Glioblastomas (adapted from Ref. (5).)

IDH-Wt gBm IDH-mutant gBm

Synonym Primary glioblastoma Secondary glioblastoma

Precursor lesion Identified de novo Diffuse astrocytoma
Anaplastic astrocytoma

Proportion of glioblastomas ~90% ~10%

Median age at diagnosis ~62 years ~44 years

M:F ratio 1.42:1 1.05:1

Median length of clinical history
at diagnosis

4 months 15 months

Median overall survival
 Surgery + radiotherapy
 Surgery + RT + CTX

9.9 months
15 months

24 months
31 months

Location Supratentorial Preferentially frontal

Necrosis Extensive Limited

TERT promoter mutations 72% 26%

TP53 mutations 27% 81%

ATRX mutations Exceptional 71%

EGFR amplification 35% Exceptional

PTEN mutations 24% Exceptional

ATRX, adult thalassemia mental retardation x-linked; CTX, chemotherapy; EGFR, epidermal growth factor receptor; 
GBM, Glioblastoma multiforme; IDH, Isocitrate dehydrogenase; PTEN, phosphatase and tensin homolog; TERT, 
telomerase reverse transcriptase; TP53, tumor protein 53; RT, radiotherapy.
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and suggest that these tumors may arise from mutations within a cell population 
that is independent of the cell populations at risk during development of de novo 
GBM (11).

molEcular landscapE of sEcondary gBm

Amplification of the EGFR gene and activating mutations of its protein product 
are hallmarks of primary GBM and appear to be exclusive of TP53 mutations (12). 
PTEN amplification and loss of chromosome 10 are additional features of primary 
GBMs (3, 13). Both primary and secondary GBMs have in common loss of hetero-
zygosity (LOH) at chromosome 10q (14–16); although PTEN is also located on 
chromosome 10, mutations in this gene are only observed in primary GBM. 
Therefore, additional genetic events must be responsible for oncogenesis of high-
grade gliomas that is shared among both primary and secondary tumors.

One of the earliest events, if not the initial event, in gliomagenesis is mutation 
of the IDH1 or IDH2 gene. Mutations in the promoter of the telomerase reverse 
transcriptase (TERT) gene lead to enhanced telomerase activity, which results in 
maintenance of telomere length and promotion of cell survival. Interestingly, 
TERT mutation is shared among both primary and secondary GBMs, potentially 
rendering this mutation as an early event in the process of tumorigenesis (17). In 
addition to these mutations, secondary GBM originating from a lower grade astro-
cytoma will frequently display mutations in the TP53 and ATRX (adult thalas-
semia mental retardation x-linked) genes, while anaplastic tumors arising from a 
lower grade oligodendroglioma lineage will have co-deletions of 1p and19q 
(2, 3, 18). There are several key signaling pathways involved in this transforma-
tion as well, and knowledge of mutations in genes involved in these processes and 
pathways is critical for an in-depth understanding of the biology of secondary 
GBM and in working toward targeted therapeutics. We will review these pathways 
in detail below.

Molecular Classification of GBMs Based on Gene expression

In 2010, Verhaak and colleagues analyzed somatic mutations, DNA copy-number 
alterations, and gene expression profiling to group GBMs into discrete categories 
(19). Through this work, they were able to establish four subtypes of GBMs 
(Classic, Proneural, Neural, and Mesenchymal) based on the specific clustering of 
molecular and gene expression profiles. The Classic category demonstrated a 
greater preponderance of EGFR amplification, decreased rates of TP53 mutation, 
along with p16INK4A and p14ARF deletion. Histologically, the Classic subtype 
demonstrated features more consistent with astrocytes. The Proneural category 
was found to have a greater rate of PDGFR amplification, TP53 mutation, LOH, 
and IDH1 mutation. These tumors had histological features most consistent with 
oligodendrocytes. Moreover, patients harboring the Proneural subtypes were 
younger and responded better to therapy. The Neural subtype was found to have a 
greater degree of neuronal marker expression and the histology was consistent 
with a combination of oligodendroglial, astrocytoic, and neuronal features. The 
Mesenchymal subtype was found to have a greater degree of NF1 mutations, 
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along with alterations of PTEN and Akt. Histologically, these tumors demonstrated 
a greater degree of necrosis and inflammatory features. Furthermore, astroglial 
and microglial cell signatures were commonly noted. This landmark study estab-
lished the concept of differential behavior of GBMs that may be similar histologi-
cally but differ substantially from a molecular and gene expression perspective.

Mechanisms of Gliomagenesis

Gliomagenesis is a multicomponent process involving several genetic mutations 
affecting numerous molecular pathways (Figure 1). When considering tumor 
phylogeny, IDH mutation is critical to deciphering whether the identified tumor is 
a primary GBM or a GBM arising from secondary progression of a lower grade 
glioma. It is now established that while IDH mutations are early events in the 
process of gliomagenesis in secondary GBM, additional genes and their end prod-
ucts are altered during this process and these include ATRX mutation, loss of 
tumor suppressor genes such as TP53 and RB1, and mutations in the promoter of 
TERT (5). Alterations of chromosomes 1, 7, 10, and 19, each harboring a distinct 
subset of tumor suppressor/promoter genes, are pivotal as well. Distinct pathways 
that have been identified as part of the core drivers of gliomagenesis include the 
EGFR/PTEN/Akt/mTOR, TP53/MDM2/p14ARF, and the p16INK4a/RB1 pathways, 
which will be elaborated upon in the subsequent sections.

Figure 1 Molecular pathways to gliomagenesis. While the cell of origin in glioma is yet to be 
identified, large-scale expression and copy-number analyses have determined multiple 
molecular processes that result in glioma formation. Primary glioblastomas (and most 
Grade I gliomas) arise via an IDH-independent pathway. Conversely, IDH mutation is an 
early if not initiating event in the development of of low-grade astrocytomas and 
oligodendrogliomas. By definition, secondary glioblastomas arise from malignant 
degeneration of an IDH-mutant lower grade tumor.
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IDH and glioma initiation

First reported by Parsons and colleagues in 2008, a number of recent studies have 
since confirmed recurrent somatic mutations in the IDH1 and IDH2 genes (R132H 
and R172K as the canonical mutations in these genes, respectively) in a signifi-
cant proportion of patients with gliomas. Further, patients who harbored tumors 
with an IDH mutation exhibit distinct disease characteristics relative to patients 
with a glioma with wild-type (WT) IDH. In 615 WHO grade II/III gliomas, IDH 
mutations were identified in 79% of the patient tumors (17). In another series 
of 457 WHO grade II/III gliomas, 80.7% of the patients were found to harbor 
an  IDH mutation (20). The Cancer Genome Atlas Research Network found an 
IDH mutation in 226 (80.1%) of 282 WHO grade II/III gliomas (21). Based 
on these results, the WHO now recognizes IDH mutation as a critical biomarker 
in the classification of gliomas (4).

The IDH enzymes catalyze the oxidative conversion of isocitrate to 
α-ketoglutarate (α-KG). IDH mutations confer a gain-of-function neomorphic 
activity, converting α-KG to R-2-hydroxyglutarate (R-2-HG), instead of its race-
mic enantiomer S-2-HG. Although 2-HG is a trace metabolic product in normal 
cells, it is markedly elevated in IDH-mutant gliomas and in other malignancies, 
such as acute myeloid leukemia (22–24). The oncogenic effect of IDH mutation 
is thought to be twofold. First, 2-HG is considered an oncometabolite that may 
play a role in the process of glioma development, and progression or resistance 
to treatment. Although the exact role of IDH1 mutation in gliomagenesis had 
initially been hampered by difficulties in establishing in vitro cultures with IDH1 
mutations (25), recent reports have demonstrated that increased levels of 2-HG 
result in increased activity of HIF-1-α and increased levels of its downstream 
targets such as VEGF. In addition, 2HG also affects collagen maturation, result-
ing in defective basement membranes that are potentially pivotal to glioma pro-
gression (25). Second, IDH mutation results in decreased production of α-KG, 
which impairs the function of many α-KG-dependent dioxygenases, including 
but not limited to histone demethylases (e.g., collagen prolyl-4-hydroxylase, 
prolyl hydroxylases, and the ten-eleven translocation (TET) family of DNA 
hydroxylases) (26). Change in histone methylation is thought to also interfere 
with the terminal differentiation of cells and may predispose cells harboring 
mutant IDH to malignant transformation (27). Based on the above evidence, 
IDH1/2 mutations have been termed as lineage markers by some authors (11), 
and it is now accepted as a more definitive marker of secondary GBM than any 
other clinical or pathological criterion (28).

atrX, tp53, and 1p/19q

The great majority of low-grade astrocytomas carry a p53 mutation while most 
oligodendrogliomas demonstrate loss of chromosomes 1p and 19q (26, 29–33). 
Biopsy-based studies suggest that the IDH1 mutation occurs prior to either p53 
mutation or 1p and 19q loss (26, 33). Following IDH-mediated oncogenesis, 
acquisition of p53 and ATRX mutations occurs in the setting of development of an 
astrocytoma (34, 35), while loss of chromosomes 1p and 19q occurs in the setting 
of development of an oligodendroglioma. While both subgroups are capable 
with  time of undergoing further malignant degeneration, the current WHO 
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classification system only considers progression to secondary GBM as an endpoint 
of astrocytoma progression. It is conceivable that all GBMs that harbor an IDH 
mutation are secondary tumors. In one study, the small subgroup of patients with 
primary GBM carrying an IDH mutation (3.4%) was younger than noncensored 
primary GBM patients and harbored frequent p53 mutations and an absence of 
EGFR amplification, features consistent with secondary GBMs (8). These findings 
suggest that these tumors could represent cases of a rapidly progressive secondary 
GBM, rather than a true primary GBM. Conversely, it can be argued that all GBMs 
harboring a WT IDH are biologically primary GBMs: cases of secondary GBM 
without an IDH mutation likely represent a progression from an undergraded, 
lower grade, or anaplastic glioma (8). These assumptions are borne out by recent 
data that show that gliomas lacking mutation in IDH or having chromosomal loss 
at 1p and 19q cluster by expression analysis and DNA copy-number profiling (21) 
and portend a severe prognosis (17). With an increased understanding of molecu-
lar markers and their incorporation into clinical trials, the disparity between 
molecular markers and histopathology-based diagnostics methods becomes more 
evident. For now, the current WHO classification system posits that, despite histo-
pathological features such as neo-vascularity and necrosis, a high-grade glioma 
with IDH1 mutation and 1p/19q co-deletion should be considered an anaplastic 
oligodendroglioma. Conversely, from a biological perspective, a histological ana-
plastic astrocytoma with WT IDH is now considered a GBM (36). These modifica-
tions in the classification system have been corroborated by outcomes data 
emerging from clinical trials. Together, these findings confirm the integral role of 
IDH and 1p/19q status in determining patient survival.

tErt promotEr mutation

Mutations in the TERT gene are thought to prevent cell senescence through 
increased telomere length, thus promoting tumorigenesis in several cancers, 
including GBM (37). The contribution of TERT mutation to tumor aggressiveness 
however is not clear. Focusing on a sample of GBM cases, Mosrati et al. found that 
TERT promoter mutation was associated with a shorter overall survival (37). 
Interestingly, this mutation was found in both primary and secondary tumors. 
More recently, Eckel-Passow et al. found that, while GBMs had a higher propor-
tion of TERT mutations in isolation (74% of cases) or had neither TERT or IDH 
mutations or loss of chromosome 1p and 19q (what they termed “triple negative” 
tumors, making up17% of cases), lower grade gliomas were much less likely to be 
“triple negative” (7% of cases) or harbor a TERT mutation in isolation (10% of 
cases) (16). These findings suggest that while TERT promoter mutation is integral 
to tumorigenesis and may contribute to the overall aggressiveness of the tumor, its 
role is modified by other key mutations.

thE g-cimp phEnotypE

Methylation of the promoter region of the MGMT gene is more frequently found 
in secondary GBMs compared to primary GBMs (75% vs. 36%) (38), and it is 
frequently associated with mutations in IDH1/2 and TP53 and utilized as a 
strong predictive marker for response to chemotherapy in GBM patients. In fact, 
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IDH mutation has been shown to mediate widespread changes in chromosome 
structure and remodeling of the DNA methylome, resulting in the establishment 
of the glioma CpG island methylator phenotype (G-CIMP). Introduction of 
mutant IDH1 into primary human astrocytes was found to be sufficient to alter 
specific histone methylation marks and induce extensive DNA hypermethylation 
in a manner that resembles the changes observed in G-CIMP+ lower grade glio-
mas. Furthermore, the epigenomic alterations resulting from mutant IDH1 acti-
vate specific gene expression programs that are associated with G-CIMP+ 
proneural glioblastoma, but not other glioblastoma subtypes, and are associated 
with longer survival. Based on these data, IDH mutation is likely the molecular 
basis of G-CIMP in gliomas, highlighting the interplay between genomic and epig-
enomic changes in cancers including GBM.

In GBM, the proneural subtype is predominantly associated with IDH1/2 
mutations and these are further subclassified as either CIMP+ or CIMP- (of which 
the G-CIMP+ shows better prognosis). The proneural subtype by itself, however, 
appears to bear little prognostic significance unless considered in association with 
the IDH1/2 mutation status (39). In fact, Turcan et al. have demonstrated that the 
IDH1 mutation alone is capable of remodeling the genomic methylation profile of 
the tumor, thus promoting the CIMP+ profile (40). Interestingly, WT IDH1 status 
promoted hypomethylation at numerous foci and CIMP- low-grade gliomas 
lacked IDH1 mutation. In addition, decreased expression of ATRX is associated 
with downregulation of MGMT expression via promoter hypermethylation (41). 
Therefore, ATRX mutation status not only predicts cell of origin but also has a 
significant prognostic role as well (34, 42, 43).

Genetics of Glioma Progression
Egfr/ptEn/akt/mtor pathWay

Activation of the PI3K/Akt pathway results in increased cell proliferation via 
downregulation of p27, thereby influencing cell-cycle progression (44), inactiva-
tion of pro-apoptotic genes (45), and increased transcription of pro-survival genes 
under the influence of NFkB (46). PI3K is recruited to the cell surface and acti-
vated through EGFR. Once phosphorylated, PI3K activates PIP3 via phosphoryla-
tion, which induces activation of downstream molecules such as Akt—a serine/
threonine kinase (47)—promoting cell survival and proliferation (48).

EGFR is a tyrosine kinase growth factor receptor situated in the cell mem-
brane. Amplification of the EGFR gene and mutation of the protein product are 
key contributors to the activation of this receptor tyrosine kinase (RTK) pathway 
in primary GBM. The most common of the EGFR-activating mutants is the 
EGFRvIII variant, in which gene mutation results in a truncated protein product 
that is constitutively active. Mutations in Akt itself, however, are not common in 
gliomas (49).

PTEN is the second most commonly mutated tumor suppressor gene in all 
cancers after p53 (50), and PTEN mutation is found in approximately 40% of 
GBMs, predominantly in the primary form (51). PTEN is a tumor suppressor and 
one of its functions is dephosphorylation of PIP3, thus preventing activation of 
Akt and mTOR (47). Through this role, PTEN is central in inhibiting cell 
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proliferation and regulating the ability of cells in migration and invasion (52). 
Loss of PTEN function, either through genetic or epigenetic modifications, is a 
common component of the Akt/PI3K/mTOR activation pathway in cancer.

tp53/mdm2/p14arf pathWay

Although mutations of the TP53 gene have been identified in both primary and 
secondary GBMs, its role appears to be predominantly related to the latter, 
where the mutation is an early event in gliomagenesis (2). While p53 mutations 
in primary GBM appear to involve all exons indiscriminately, they are predomi-
nantly focused at codons 248 and 273, particularly involving CpG sites, in 
secondary GBM (2). This discrepancy suggests that p53 mutation in secondary 
GBM is a specific and stereotyped event in secondary GBM ontology, while p53 
mutation in primary GBM is potentially a consequence of widespread genomic 
instability (3).

MDM2 amplification appears to be specific to primary GBMs that lack the p53 
mutation (53, 54). In normal cells, WT p53 induces the expression of MDM2, 
which in turn inhibits the function of WT p53. Furthermore, WT p53 inhibits 
the  function of p14ARF, which would normally inhibit the downregulation of 
p53 by MDM2. This autoregulatory loop is disrupted when any of the above is 
dysfunctional, adversely affecting cell-cycle control, DNA damage repair, cell 
 proliferation/differentiation, and neovascularization (55).

p16ink4a/rB1 pathWay

Either through homozygous deletion or promoter methylation, the alteration of 
p16INK4a is an important step in both primary and secondary GBMs (56). 
Conversely, methylation of the RB1 promoter, correlating with decreased RB1 
expression, is more specific to secondary GBM (57). The p16INK4a/RB1 pathway 
is critical to cell-cycle control (58), as RB1 regulates the progression of the cell 
cycle from G1 to the S phase by preventing the release of the E2F transcription 
factor. The latter enables the transcription of genes required for cell-cycle progres-
sion, in addition to p14ARF. The phosphorylation of RB1, via the CDK4/cyclin D 
complex, inhibits this function enabling the progression of the cell cycle along 
with increased p53 expression via the activated p14ARF. WT p16INK4a serves as 
an additional checkpoint by binding to CDK4 and inhibiting the function of the 
CDK4/cyclin D complex. Therefore, altered expression of any of these genes 
results in an inability to control cell-cycle progression. The central role of cell-
cycle regulation in the genesis of secondary GBM has also been confirmed with 
cDNA expression profile analysis (59).

effect of Treatment on Glioma Transformation

By virtue of the inherent heterogeneity of these tumors, it is expected that not all 
of the cells within a glioma will respond to chemotherapy and radiation, inevita-
bly resulting in tumor progression/recurrence. Further, recent evidence suggests 
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that chemotherapy and radiation may actually result in mutations that promote 
tumor cell survival. This pro-mutational ability has been most extensively studied 
in the setting of temozolamide (TMZ) and ionizing radiation.

tEmozolamidE and lgg progrEssion

An alkylating agent, TMZ is an integral component of the standard treatment regi-
men for patients with GBM. Accumulating evidence from numerous studies sug-
gests that acquired treatment resistance following TMZ administration is 
multifactorial and rooted in transcriptional, metabolomic, genomic, and epig-
enomic changes that lead to this phenotype (60–67).

Costello and colleagues undertook genome sequence analysis of 23 initial and 
matched recurrent human gliomas to address two questions: (i) What is the extent 
to which mutations in initial tumors differ from mutations in their subsequent 
recurrent tumors? (ii) How does chemotherapy with TMZ affect the mutational 
profile of recurrent tumors? The authors found an average of 33 somatic coding 
mutations in each initial tumor, of which an average of 54% were also detected at 
recurrence (shared mutations), including mutations in IDH1, TP53, and ATRX. All 
other somatic mutations were identified only in the initial tumor or only in the 
recurrent tumor from a given patient (private mutations), though overall, the ini-
tial and recurrent gliomas displayed a broad spectrum of genetic relatedness. 
Interestingly, in multiple patients, the recurrent tumors shared ≤25% of mutations 
detected in the initial tumors, suggesting that these tumors were seeded by cells 
derived from the initial tumor at an early stage of its evolution, and that tumor 
recurrence can occur as the result of either linear or branched evolution.

Their findings regarding the effect of TMZ on tumor evolution and recurrence 
were as striking. Although the initial tumors and most of the recurrent tumors in 
their cohort had 0.2 to 4.5 mutations per megabase (Mb), 6 of the 10 patients 
treated with TMZ had recurrent tumors that were hypermutated; that is, they 
harbored 31.9 to 90.9 mutations per Mb. Overall, 97% of these were C>T/G>A 
transitions predominantly occurring at CpC and CpT dinucleotides, which is a 
signature of TMZ-induced mutagenesis distinct from nonhypermutated tumors. 
Further, acquisition of DNA mismatch repair (MMR) pathway dysfunction, which 
results in resistance to TMZ, appeared to exacerbate hypermutation in the face of 
continued TMZ therapy. The authors postulated that introduction of thousands of 
de novo mutations could drive the evolution of TMZ-resistant glioma cells to 
higher states of malignant potential. Indeed, all six recurrent tumors that showed 
evidence of TMZ-induced hypermutation underwent malignant progression to 
GBM. Many of these tumors developed mutations in pathways described as criti-
cal to gliomagenesis, including Akt-mTOR and the p16/RB. Treatment-induced 
somatic mutations were recently longitudinally studied in a patient with a 5-year 
survival period following initial diagnosis (68). Using whole exome sequencing, 
the investigators demonstrated that each successive therapy selected for resistant 
clones of tumor cells and that these had arisen via the process of chromothripsis. 
In addition, this approach enabled the provision of personalized therapy for this 
patient, based on the identification of target clonal populations sensitive to avail-
able treatment, which was critical for this long-term survival. Given the evidence 
derived from such analyses, it is clear that the genome of GBMs is dynamic and in 
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order to offer true personalized treatment, the genome of each successive tumor 
population must be investigated thoroughly.

Stepaneko et al. extended these findings with in vitro studies that demonstrated 
that long-term exposure of glioma cells to TMZ induces chromosomal instability, 
leading to alteration of cell growth, invasiveness, migration, and response to re-
treatment (69). Among the TMZ-resistant cell lines, some responded to temsiroli-
mus, an mTOR inhibitor. Interestingly, although TMZ has been shown to induce 
the transformation of glioma nonstem-like cells into glioma stem-like cells, the 
sensitivity of both differentiated and stem-like cells to TMZ was similar (70, 71). 
These findings further highlight the importance of the evolution of the genetic 
network that infers TMZ resistance in GBM.

EffEct of radiation on glioma BEhavior

The introduction of radiation therapy to the armamentarium of therapy in patients 
with GBM has been a significant contribution. However, similar to TMZ, radiation 
is thought to promote malignant progression of gliomas as well. Based on transcrip-
tion profiling of patient-derived radiation-resistant GBM cells, the mesenchymal 
subtype was the most commonly identified (72). In vitro studies have also demon-
strated a proneural to mesenchymal transition among oligodendroglioma cell cul-
tures that were irradiated (73). The authors proposed that the activation of the 
STAT3 transcription factor following radiation was contributory, given that its inhi-
bition prevented this transition. Furthermore, Jak2 inhibition in mice undergoing 
radiation prolonged their survival. Alternative mechanisms such as activation of the 
TNF-a /NFkB pathway may also be involved (72). Other post-translational effects 
of radiation exposure, such as the stabilization of HIF-1α, promoting angiogenesis, 
have been proposed (74). Therefore, a combination of intrinsic cell changes and 
modifications to the tumor microenvironment may be responsible for the radia-
tion-induced malignant progression noted in gliomas.

Conclusion

The recent publication of the modified WHO classification for CNS tumors, inte-
grating molecular signatures into histological-based classifications, is timely and 
reflects the field’s evolution. Based on our understanding of the vast intratumoral 
heterogeneity among GBMs, the logical next step is to establish biomarkers that 
would be predictive of treatment response, identify clonal populations that are 
potentially resistant to therapy, and develop combination therapies tailored to the 
specific pathways involved within the entirety of the tumor. Analysis of initial and 
recurrent tumor samples may be helpful for better clonal evolution analysis.
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