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Abstract: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendo-
crine tumors that often develop on a background of predisposing genetic muta-
tions. With the continuous expansion of genetic landscape of PPGL, new tools of 
genetic screening have been developed for simultaneous parallel sequencing of 
multiple genes, at faster rates and lower costs. Yet, next-generation sequencing 
techniques are not available worldwide and demand expertise to circumvent tech-
nical limitations and interpret results of uncertain significance, and thus a sequen-
tial genetic analysis driven by the clinical phenotype remains advisable for a 
successful diagnosis, and to save costs. In this chapter, we focus on the clinical 
features of patients with PPGLs as a framework for an optimized sequential genetic 
screening. We also describe new syndromes and genes that are expanding the 
genetic etiology of PPGLs.
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INTRODUCTION

Pheochromocytomas (PHEO; MIM #171300) and paragangliomas (PGLs; MIM 
#168000) (pheochromocytomas and paragangliomas, PPGLs) are rare neuro-
endocrine tumors that arise in the adrenal medulla and in the ganglia of the 
sympathetic and parasympathetic nervous chains, respectively (1). The genetic 
landscape of PPGL has evolved over the years from the old “rule of tens” (10%)
for a genetic etiology to a prevalence of more than 40% of genetic mutations 
associated with these tumors (2, 3). Besides von Hippel–Lindau (VHL), rear-
ranged during transfection (RET), and neurofibromatosis type 1 (NF1) genes, 
new germline mutations in the following genes that predispose to PPGLs have 
been  identified: the succinate dehydrogenase subunits A/B/C/D/AF2 (SDHx), 
which cause paraganglioma  syndrome types 1 to 5 (PGL1–5); Myc-associated 
protein X (MAX); transmembrane protein 127 (TMEM127), which causes the 
familial pheochromocytoma  syndromes; hypoxia-inducible factor 2 alpha 
(HIF2A); fumarate hydratase (FH); prolyl hydroxylase types 1 and 2 (PHD1 
and PHD2); kinesin family member 1B (KIF1B); and malate dehydrogenase 2 
(MDH2) (4–17).

Considering the high costs of genetic screening and the large and increasing 
number of PPGL-associated genes, it is advised that clinicians follow a phenotype-
driven algorithm when ordering genetic tests for patients with PPGL (Table 1). 
Additionally, it may be inadequate to screen for mutations in genes that have 
never been associated with a particular PPGL phenotype (18, 19). Syndromic 
presentations, multifocal tumors, metastatic disease, bilateral pheochromocytoma 
(bPHEO), and pediatric PPGLs are clinical features associated with a higher likeli-
hood of a gene mutation, and these scenarios may entail the selection of a specific 
genetic screening (20–22). Furthermore, the type of catecholamine secretion by 
the PPGL, the pattern of immunostaining in pathology surveys, and results from 
functional nuclear imaging provide clues to prioritize the sequential genetic 
screening (18, 23–27). 

MOLECULAR PATHWAYS ASSOCIATED WITH PPGL

The molecular pathways involved in the development of PPGL are classified 
according to three main clusters: a pseudohypoxic cluster (cluster 1: mutations in 
VHL, SDHx, HIF2A, PHD1/PHD2, FH, and MDH2), a cluster of kinase receptor 
signaling and protein translation pathways (cluster 2: mutations in RET, NF1, 
TMEM127, KIF1B, and MAX), and a cluster related to a Wnt-altered pathway 
(28–30). This last cluster includes only mutations at the somatic level that cause 
an aggressive form of sporadic pheochromocytoma (30).

In the pseudohypoxic cluster, there is a common denominator to all PPGL-
associated mutations and their altered pathways, that is, overexpression of 
hypoxia-inducible factor type 2 alpha (HIF-2α), the predominant isoform 
of HIF-α in cells of neural crest origin (31, 32). Under hypoxia states, there 
is  an  overexpression of HIF-2α which upregulates genes that are drivers of 
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erythropoiesis, glucose metabolism, proliferation, programmed cell survival, 
and angiogenesis. Pseudohypoxia is a state where there is a normal oxygen sup-
ply to the tissues but a disruption in the oxygen sensing pathways (caused by 
gene mutations and their non-synonymous structural translated proteins), lead-
ing to an abnormal overexpression of HIF-2α that promotes oncogenesis, cancer 
invasion, and metastasis (31, 32). The SDH complex (formed by its catalytic 
subunits A and B, and anchorage subunits C and D) and the enzymes FH and 
MDH2 catalyze the conversion of succinate to fumarate, fumarate to malate, and 
malate to oxaloacetate in the tricarboxylicacid cycle, respectively. Loss-of-
function mutations in SDHx (SDHD, MIM *602690; SDHAF2, MIM *613019; 
SDHC, MIM *602413; SDHB, MIM *185470; SDHA, MIM *600857), FH (MIM 
*136850), and MDH2 (MIM *154100) lead to the accumulation of Krebs cycle 
precursors such as fumarate and succinate, which act as oncometabolites: 
(i) they inhibit the PHD activity, which signals HIF-2α for degradation; (ii) they 
inhibit the factor inhibiting HIF, resulting in activation by HIF-2α (and 
other  complexed molecules) of proteins that promote gene transcription; 
(iii) succinate inhibits the ten eleven translocation enzymes, which are key in 
repressing gene transcription by silencing promoter regions through methyla-
tion processes (33). Similarly, inactivating mutations in PHD1 (MIM *606424) 
and PHD2 (MIM *606425) lead to a decrease in the hydroxylation (by their 
corresponding enzymes, PHD1 and PHD2) of HIF-2α, promoting its accumula-
tion and proneoplastic activity (15, 32). HIF2A (MIM *603349) mutations that 
predispose to PPGL cause electrostatic alterations in HIF-2α that impair its 
hydroxylation and subsequent degradation by VHL proteins (34, 35). Finally, 
VHL (MIM *608537) inactivating mutations lead to an excess of HIF-2α due to 
the defective recognition of its hydroxylated isoform by the VHL protein and, 
ultimately, to cancer development and metastasis (34, 35).

The proto oncogene RET (MIM + 164761) encodes a tyrosine kinase trans-
membrane receptor that activates Ras/MAPK and PI3K/AKT pathways, which 
are involved in proliferation, survival, migration, and angiogenesis. Gain-of-
function mutations in RET lead to a constitutive activation of the tyrosine 
kinase domain of its receptor, and to cancer initiation through deregulated 
proliferation and increased cell survival (36). NF1 (MIM *613113) is a tumor 
suppressor gene that encodes a GTPAse activator—neurofibromin type 1. 
Neurofibromin type 1 normally inhibits Ras and its downstream activation 
through the mTOR kinase pathway (37). TMEM127 (MIM *613403) is also a 
tumor suppressor gene that translates a protein which directly inhibits the 
mTOR protein (38). Thus, loss–of-function mutations in NF1 and TMEM127 
lead to an increased activation of the mTOR pathway and, ultimately, to 
enhanced cell proliferation and cancer development. MAX (MIM *154950) 
gene encodes a nuclear protein that acts as a transcriptional repressor of 
Myc. PPGL-associated MAX mutations translate a protein that cannot bind 
Myc, thus allowing a Myc deregulated transcriptional activity that results 
in  cell proliferation, repression of differentiation, and angiogenesis (39). 
KIF1B (MIM *605995) encodes a protein that acts as a downstream effector 
of PHD3-induced apoptosis. Thus, loss-of-function mutations in KIF1B 
lead  to PPGL development through cell death escape and enhanced sur-
vival (40, 41).
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SYNDROMIC PRESENTATIONS

PPGL may be part of one of the following syndromes: VHL, multiple endocrine 
neoplasia type 2 (MEN2), NF1, and those associated with mutations in PHD1/
PHD2 and HIF2A. VHL syndrome (MIM #193300) is an autosomal dominant 
disease characterized by central nervous system (CNS) and retinal hemangiomas 
(60–80%), renal cysts (50–70%), clear cell renal cell carcinoma (RCC) (30%), 
pancreatic neuroendocrine tumors (8–17%) and cysts (72%), PPGL (20%), 
endolymphatic sac tumors (6–15%), and epididymal (25–60%) and broad 
 ligament  cystadenomas (42–45). CNS hemangiomas are the most common pro-
totypic lesions of VHL disease, and death is usually caused by RCC and compli-
cations of CNS tumors (42, 45). The mean age of presentation is in the third 
decade of life and the penetrance of the disease reaches 90% by 65 years old (yo), 
but patients can show retinal hemangioblastomas or pancreatic cysts as early as 
1 yo (45). According to the patient’s genotype, VHL disease may be classified as 
type 1 (large deletions and truncating mutations of VHL that predispose to CNS 
hemangiomas and RCC, but not PPGL) or type 2 (missense mutations that pre-
dispose to PPGL associated with hemangioblastomas: VHL disease type 2A; 
hemangioblastomas and RCC: VHL disease type 2B; or only PPGL:VHL disease 
type 2C) (44, 45). In large case series of patients with PPGL, a VHL mutation is 
present in 9.6–17.6% of cases (3, 46). The mean age of PPGL presentation is 30 
yo (4–58), and patients develop PHEO much more frequently than PGL (19). 
PPGL may be the presenting feature of the syndrome (30–55%) and, as de novo 
mutations are frequent, patients may not have a remarkable personal and family 
history (19, 45, 47). Thus, clinicians should bear in mind the relative high fre-
quency of VHL mutations (46) in patients with a seemingly sporadic PPGL when 
ordering their genetic screening. 

MEN2 is an autosomal dominant syndrome caused by germline mutations in 
RET, and it is classified into two subtypes according to the patient’s phenotype: 
MEN2A (MIM #171400) and MEN2B (MIM #162300) (48). MEN2A is the most 
common subtype (95%) and its prototypic lesions are medullary thyroid 
 carcinoma (MTC, 97%), PPGL (68%), and primary hyperparathyroidism (14%). 
The mean age of presentation is 40 yo and the penetrance is virtually 100%by the 
8th decade of life (48–50). MEN2B is a variant characterized by an aggressive 
form of MTC (100%), PPGL (59%), marfanoid habitus, and ganglioneuromatosis 
of the oral mucosa and gut. It usually develops earlier than MEN2A (mean age of 
presentation:13–22 yo), and most patients have incurable MTC at diagnosis, as 
75% of cases are sporadic and thus not amenable for cancer surveillance and 
timely treatment strategies (49, 51, 52). In MEN2, PPGL are usually diagnosed 
concomitantly or after MTC, and PHEO is the most frequent chromaffin cell 
tumor, whereas PGL occurs in a small proportion of patients (4.8%) (49). Specific 
mutations in RET codons 918, 883, 634, and 631 confer the highest risk for 
PHEO, whereas other affected codons are associated with a much lower pene-
trance (50, 53).

NF1 (MIM #162200) is a syndrome characterized by the progressive occur-
rence, since birth, of cafe au lait spots (~100%), axillary/inguinal freckling (90%), 
neurofibromas (84%), Lisch nodules of the iris (>70%), typical osseous lesions 



Pereira BD et al.8

(14%; scoliosis, sphenoid wing, and/or long bone dysplasia), and optic glioma 
(4%). NF1 also predisposes to breast, lung, and colorectal carcinomas (16%), 
PPGL (7.7%), sarcomas (7%), gastrointestinal stromal tumors, GIST (7%), mela-
noma (0.1–5.4%), and pancreatic neuroendocrine tumors (rare) (54–58). The 
clinical diagnosis of NF1 is usually easy to establish, as the penetrance of at least 
two NF1 prototypic lesions is close to 100% by 8 yo (54). Similar to VHL disease 
and MEN2, PHEO (93.6%) is much more frequent than PGL (6%) in patients 
with NF1, and the mean age of diagnosis of PPGL is 42 yo (19, 57). 

HIF2A mutations cause a new PPGL-associated cancer syndrome described 
initially in 2012 (59). This syndrome is characterized by a set of clinical features, 
occurring either in isolation or in combination: polycythemia since early child-
hood, PPGL, duodenal somatostatinomas, and retinopathy. The “Pacak–Zhuang” 
syndrome is considered if the patient develops polycythemia, PPGL, and 
somatostatinoma (60). The relative frequency of the clinical phenotypes associ-
ated with HIF2A mutations is isolated polycythemia (45.0%), polycythemia and 
PPGL (14.5%), polycythemia, PPGL, and somatostatinoma (9.6%), isolated PPGL 
(22.6%), brain hemangiomas (4.8%, one with a concomitant PGL), and duodenal 
gangliocytic PGL (3.2%) (13, 60, 61–70). The prevalence of HIF2A mutations in 
cohorts of PPGL is estimated to be 5.3% (63, 65, 66), with a median age of diag-
nosis of PHEO of 40 yo (range: 13–78), whereas for PGL it is 20 yo (range: 8–78) 
(13, 60, 61–70). These tumors are initially benign and multiple, but they recur 
frequently, requiring repeated surgeries, and develop metastases, especially 
PGLs (60). Somatostatinomas occur only in females at the median age of diagnosis 
of 32 yo (range: 22–59) and they are located around duodenal ampulla. These 
tumors are associated with symptomatic gallbladder disease, occur in the duode-
num (100.0%) and pancreas (50.0%), carry a considerable risk of recurrence 
(50.0%) and malignancy (50.0%), and are diagnosed after the development of 
PPGL (60). The majority of HIF2A mutations are somatic and thus the family his-
tory is negative. However, some patients have somatic mosaicism, where the 
mutation is found in tumor cells and in a fraction of normal tissues (61, 63, 65, 70). 
Thus, there may be a possibility of transmission of a HIF2A mutation to the next 
generation by an affected member who has mosaicism that includes the  gametes. 
However, such cases have never been described until now (61). Additionally, 
there are seven familial cases of HIF2A mutations, but the majority had only poly-
cythemia (60), and two non-related cases of germline mutations in adult patients 
with isolated PHEO (65). This evidence has led experts to develop recommenda-
tions regarding genetic testing and counseling, as well as clinical follow-up of 
patients with HIF2A mutations (60, 61).

Germline mutations in PHD1/PHD2 were reported in patients with polycythe-
mia and PPGL (15, 71). The syndromes caused by these mutations are character-
ized by polycythemia at a later age relative to HIF2A mutation carriers and 
recurrent PPGL (15, 71). To date, only two cases of PHD2-and one case of PHD1-
associated PPGL have been reported in the literature (15, 71). The two patients 
with PHD2 mutations were a female and a male with an unremarkable family 
history who developed polycythemia by the ages of 16 yo and 30 yo, and recur-
rent PPGL since 39 yo (bPHEO and recurrent PGL) and 43 yo ( recurrent PGL), 
respectively. The single case of PHD1-associated PPGL was a female with no fam-
ily history who presented with polycythemia diagnosed at 6 yo and developed 
PPGL (bPHEO and recurrent and metastatic PGL) since 14 yo (15, 71). 



Genetics of Pheochromocytoma and Paraganglioma 9

MULTIFOCAL TUMORS

Multifocal PPGLs occur mainly in patients with SDHx, HIF2A, PHD1/2, and 
FH mutations and rarely in those with MAX and VHL mutations (11, 14, 15, 46, 
60, 71, 72).

Germline SDHD mutations predispose carriers to PGL1 (MIM #168000) (9). 
This syndrome is characterized by parasympathetic head and neck (HN) PGL 
(89.0%), sympathetic thoracic PGL (16.0%), and/or PHEO (10.5%), with a par-
ticularly high incidence of multiple tumors (66.9%) and recurrence of new tumors 
(58.2%). The mean age of presentation is 28 yo, and the penetrance reaches 
>80.0% by 40 yo (72–74). Non-chromaffin cell tumors may also occur in patients 
with SDHD mutations (RCC: 8%; GIST: rare, isolated, or associated with PGL—
Carney dyad or Carney–Stratakis syndrome—; and pituitary adenomas: rare) 
(75–80). PGL1 almost always manifests when the SDHD mutation is paternally 
inherited due to a selective somatic loss of the maternal chromosome 11. Lack of 
the paternal chromosome 11 does not lead to tumor initiation due to a maternal 
oncosuppressor locus in the 11p15 region (imprinted in the father) (81). Thus, 
the family history may show a “skip-generation” pattern of inheritance (73, 82, 83). 
Very rarely, loss of the paternal 11q (where SDHD allele is located) and a mitotic 
recombination of the maternal 11q (carrying an SDHD mutation) with the pater-
nal 11p15 imprinted oncossupressor region may lead to the phenotypic expres-
sion of the disease, inherited from the mother (73, 82, 83).

SDHB mutations cause PGL4 (MIM #115310) (7), an autosomal dominant 
disorder characterized mainly by the development of sympathetic abdominal 
(67.0%) and thoracic PGL (17.6%), parasympathetic HN PGL (27.5%), and/or 
PHEO (11.4%); multifocal tumors may develop in 20.8% of patients (72, 73). 
The mean age of presentation is 34 yo, and the penetrance reaches 65.0% by 40 
yo (73). Although both SDHB and SDHD mutations predispose patients to multi-
focal tumors, the former are more likely when the phenotype is characterized by 
thoracic and abdominal PPGL (72, 73). SDHB mutations are also associated with 
the development of RCC (14%), GIST (2%; isolated or as part of Carney dyad/
Carney–Stratakis syndrome), and pituitary adenomas (rare) (75–80). 

PGL3 (MIM #506373) is caused by mutations in SDHC gene (84). This syn-
drome is inherited in an autosomal dominant pattern and clinical disease usually 
manifest at a mean age of 46 yo; the prevalence of PPGL associated with PGL3 is 
4.0% (85). Carriers of SDHC mutations develop mainly HN PGL (87.5%) of 
carotid body and jugular/tympanojugular region, and less frequently thoracic 
PGL (12.5%) and PHEO (rare) (72, 85, 86). Although multifocal HN PGLs are 
more likely associated with SDHD mutations, this phenotype is found in 31.2% of 
patients with PGL3 (72). SDHC mutations are also associated with the develop-
ment of RCC (rare), GIST (rare; isolated or as part of Carney dyad), and pituitary 
adenomas (rare) (75–80). Of interest, the epigenetic methylation of the promoter 
region of SDHC (at the somatic level) is the molecular signature of Carney triad—
GIST, PGL, and pulmonary chondroma (78).

SDHAF2 mutations were originally described in a large Dutch kindred with 
HN PGL, with half of the affected carriers manifesting multiple tumors (87, 88). 
PGL2 (MIM #601650) is inherited in an autosomal dominant pattern but similar 
to PGL1, as SDHAF2 is maternally imprinted, clinical manifestations occur only 
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when mutations are inherited from the father (88). Since the description of PGL2 
in the Dutch family, only a few additional reports have been published (10, 88, 89), 
and the prevalence of SDHAF2 mutations in patients with PPGL is thus consid-
ered extremely rare (<1%) (90). Tumors develop as early as 20 yo, and the 
 penetrance of the disease in carriers of paternally inherited mutations reaches 
75% by the seventh decade of life (10, 73, 89). The majority of patients develop 
carotid HN PGL (56.3%), with multifocal tumors (HN region) detected in 46.8% 
of cases. Thoracic PGLs (co-occurring with HN PGL) and PHEO (single tumors) 
were also rarely described (10, 88, 89).

Patients with HIF2A mutations develop PPGL at a median age of 17 yo 
(8–39).These tumors are recurrent, localized in the abdomen in almost all cases, 
and PGLs are diagnosed before or simultaneously with PHEO in 66% of cases 
(13, 60, 61, 62). The three patients reported to date with PHD1/PHD2 muta-
tions developed a clinical phenotype similar to patients with HIF2A mutations 
(abdominal, recurrent PPGL) (15, 71). It is thus recommended that patients 
with PHD1/PHD2/HIF2A mutations should have a follow-up by imaging every 
1–2 years (HIF2A: since 8 yo; PHD1/PHD2: unknown, youngest age reported is 
14 yo) (60). Considering all available imaging methods, the most accurate 
examination to follow patients with PHD1/PHD2/HIF2A mutations is 18F-fluoro
dihydroxyphenylalanine (18F-FDOPA) positron emission tomography (PET)/
computed tomography (CT), which reflects the importance of the genotype to 
individualize the care of patients with PPGL (60).

FH mutations, a cause of hereditary leiomyomatosis (cutaneous and uterine, 
46%) and renal cell cancer (47%), were found recently to predispose carriers to 
PPGL (rarely, 0.83% of all PPGL) (14, 91). The 10 patients reported to date had a 
median age of diagnosis of 32 yo (6–69); eight patients developed PHEO and four 
patients developed PGL (three thoraco-abdominal and one head and neck) 
(14, 91–93). In a large collaborative cohort study, FH mutations were found to 
predispose to multifocal PPGL (30%) with a significantly higher rate than muta-
tions in other PPGL-associated genes (14).

MDH2 has been recently found as a new PPGL susceptibility gene in a 55 yo 
man with multiple recurrent thoracic and abdominal PGL (17). Although no fur-
ther cases have been reported to date, it may be hypothesized that patients with 
PPGL and MDH2 mutations manifest a phenotype similar to that of patients with 
FH mutations, as non-synonymous enzymes coded by these genes may generate a 
similar disruption of Krebs cycle and proneoplastic environment. 

VHL disease is rarely associated with PGL. The majority are located in the 
abdomen and are usually solitary (42, 44, 94). The spectrum of prevalence of 
multifocal PPGL (abdominal PGL and PHEO) in VHL disease is wide across stud-
ies, from 0 to 18.8% (19, 47, 95). Considering that VHL is one of the most fre-
quently mutated PPGL-associated genes (46), clinicians should take into account 
this gene as a cause of multifocal PPGL when patients have a negative genetic 
screening for SDHx mutations.

MAX mutations are a genetic cause of familial PHEO, which was discovered in 
2011 in a cohort of young patients with bPHEO that tested negative to all of the 
main PPGL susceptibility genes (96). This finding was corroborated in a further 
cohort study that concluded that MAX mutations are a rare cause (<2%) of PPGL 
(11). Patients with MAX mutations have a median age of diagnosis of 30.5 years 
(range: 17–47) and the majority (73%) have developed the disease by 40 yo. 
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Family history is present in 37% of cases, and it shows a preferential paternal 
transmission of the disease (and a “skip-generation” pattern of heritability) 
(11, 96). Although no cases of multifocal PPGL were reported in the first pub-
lished cohort of patients with MAX mutations (96), a further report comprising 
23 PPGL patients with germline mutations in MAX showed a prevalence of thora-
coabdominal PGL in association with PHEO in 21% of cases (11). Thus, although 
MAX is a rare cause of multifocal PPGL, it should also be considered in the genetic 
screening of patients with multifocal PPGL after more common gene mutations 
have been excluded.

METASTATIC DISEASE

Malignant PPGL is considered when there is evidence of metastasis (e.g., bone, 
lymph node) (1). Its prevalence is reported to be 10.0%, considering all age 
groups (3, 19, 46), and tumors larger than 4 cm or extra-adrenal in location, pedi-
atric age, and SDHB mutations are features that confer a higher risk of malignancy 
(97, 98). The majority of metastatic PPGLs are associated with SDHB mutations, 
and less frequently with NF1, SDHA, HIF2A, MAX, and FH mutations (5, 7, 11, 
14, 19, 60, 72, 90, 99, 100).

PGL4 is associated with the development of metastatic PPGL in 37.0% of 
patients across the age spectrum (72, 73). Thoracic and abdominal sympathetic 
tumors carry the highest risk of metastasis, mainly to the lymph nodes, liver, 
lungs, and bones (7, 72). Thus, patients with SDHB mutations need a rigorous 
lifetime follow-up for timely detection of metastatic disease. When comparing all 
the available functional imaging techniques for this purpose, the most accurate for 
patients with SDHx mutations is [68Ga]-DOTA(0)-Tyr(3)-octreotate ([68Ga]-
DOTATATE) PET/CT, followed by [18F]-fluoro-2-deoxy-D-glucose PET/CT (101). 
These data underline the importance of the patient genotype for the delivery of 
precision medicine.

NF1 is a cause of PPGL in less than 3% of cohorts of patients with these 
tumors, but it is associated with a considerable rate of metastatic PPGL (5.4–12%) 
(19, 99, 100), with a large review of 148 patients with NF1-associated PPGL 
reporting 11.5% (5). The majority of cases present at diagnosis with metastasis in 
the liver, lungs, and bones (5, 19, 99, 100). 

PGL5 (MIM #614165) is caused by mutations in the subunit A of the SDH 
complex (6), which are found in 3.0% of all PPGL patients (90). This syndrome 
has a median age of presentation of 33 yo, and the penetrance reaches 38% by 
40  yo (6, 24, 90). SDHA mutations predispose patients to HN PGL (38.9%), 
abdominal PGL (27.8%), and unilateral PHEO (24.0%) (6, 24, 25, 90). SDHA 
mutations also confer susceptibility to GIST (isolated or as part of Carney dyad) 
and pituitary adenomas (rare) (75–80). In the largest case series (38 patients) of 
PPGL associated-SDHA mutations, the reported prevalence of metastatic PPGL 
was 11% (90). 

HIF2A mutations are associated with metastatic PPGL in 18% of patients, 
and the few cases reported were abdominal PGL (13, 60–70). However, it seems 
that the aggressive behavior of metastatic PPGL seen in patients with SDHB-
associated tumors is not present in patients with HIF2A mutations (60).
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In patients with MAX mutations, the rate of metastatic PPGL is 10.5–25.0%, 
considering the two largest case series published. All cases occurred in patients 
with PHEO, and the majority showed metastasis at diagnosis (11, 96).

Taking into account the 10 reported patients with PPGL and FH mutations, 
metastatic disease was described in three of these cases (30%) (14, 91–93), and in 
a large cohort study of patients with PPGL, FH mutations were associated with a 
significantly higher risk of malignancy when compared with mutations in other 
PPGL susceptibility genes (14). 

The single case of MDH2-associated multifocal PGL reported to date was also 
found to be malignant (17). 

Thus, although patients with NF1, SDHA, HIF2A, MAX, FH, and MDH2 muta-
tions represent a minority among PPGL cases, clinicians should bear in mind the 
potential for metastatic behavior of tumors associated with these genotypes in 
the long-term care.

BILATERAL PHEOCHROMOCYTOMA

bPHEO often occurs in association with MEN2 or VHL disease and is rarely 
 associated with MAX, TMEM127, and KIF1B mutations (11, 16, 48–52, 95, 
102–104).

Patients with MEN2 are prone to bPHEO (synchronous or metachronous) in 
47–66% of cases (48–52). The highest risk RET mutations for developing PHEO 
(those that affect RET codons 918, 883, 634, 631, and 618) are also associated 
with a high incidence of bPHEO (50, 53, 104). After adrenalectomy for a unilat-
eral tumor, the mean follow-up time for a metachronous PHEO to develop is 
3.6–5.2 years (49, 50, 105).

VHL disease is associated with bPHEO in 29–43.5% of cases (19, 47, 95); 
additionally, in patients presenting with a unilateral PHEO, a contralateral tumor 
may develop in 19% of cases at a mean follow-up time of 4 years (47, 94). Finally, 
VHL mutations are most likely in patients with an apparently nonsyndromic 
bPHEO included in large cohort studies, due to the higher incidence of VHL com-
pared with RET mutations (46).

TMEM127 mutations are a rare cause of PPGL (<2%) initially described in a 
cohort of patients older than the expected age for individuals with hereditary 
PPGL (12). In addition, it was found that family history was absent in nearly half 
of cases, which may hinder the suspicion for TMEM127 mutations in clinical 
grounds (12). In larger case series, the median age of diagnosis was reported to be 
41.5 yo (21–75), and the cumulative penetrance for clinical disease reached 32% 
by 65 yo (90, 102, 103). Patients with TMEM127 mutations usually present with 
a unilateral PHEO, but have also a high rate of bPHEO (28.5–37%). They have a 
low incidence of PGL and metastatic disease (rare cases) (93, 102, 103).

MAX mutations are associated with a particularly high incidence of bPHEO 
(66.7–73%), considering the three largest case series published to date (11, 90, 96). 

KIF1B germline mutations were initially reported in a family with bPHEO 
occurring in a female proband and her grandfather (age of diagnosis: 22 and 
70 yo, respectively) (16). An additional case of a 54 yo female with a unilateral 
PHEO was reported later in a cohort of PPGL studied by targeted next-generation 
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sequencing (NGS) (106). Thus, although few cases of KIF1B-associated PPGL 
have been described to assume a propensity of patients with mutations in this 
gene to develop bPHEO, clinicians should bear in mind the possibility of a KIF1B 
mutation when more common genes associated with this phenotype have been 
found to be normal. 

PEDIATRIC PPGL

Considering the largest case series of pediatric patients (363 patients ≤18 yo) with 
PPGL published to date, the prevalence of genetic mutations was found to be 
66.8–80.4% (72, 107–109). The majority of PPGLs developing at a pediatric 
age occur in association with SDHB, SDHD, and VHL mutations (74, 107), and 
the higher frequency of hereditary cases at a pediatric compared with adult age is 
due to an excess of mutations in PPGL-susceptibility genes of cluster 1 (74). From 
a clinical point of view, it is worth noting that pediatric patients have a higher 
incidence of extra-adrenal, multifocal, recurrent, and metastatic tumors compared 
with adults (74). Thus, considering the very high prevalence of gene mutations in 
patients with PPGL at a pediatric age, all cases with ≤18 yo should be considered 
for genetic screening (18, 107, 109).

BIOCHEMICAL PHENOTYPE

The pattern of catecholamine secretion by the PPGL is recognized as a signature 
of its genetic background. Indeed, cluster 1 gene mutations are associated with a 
noradrenergic and/or dopaminergic phenotype of tumoral secretion, whereas 
gene mutations in cluster 2 are associated with an adrenergic and/or noradrener-
gic phenotype (110). Under hypoxia (or pseudohypoxia) states, HIF-2a activates 
enzymes (e.g., tyrosine hydroxylase, dopamine ß-hydroxylase, and dopa decar-
boxylase) that favor the production of norepinephrine in the catecholamine pro-
duction pathway and, in parallel, decreases the expression of phenylethanolamine 
N-methyltransferase, the enzyme that converts norepinephrine to epinephrine 
(110). In agreement with these findings, PPGLs associated with VHL, SDHx, 
HIF2A/PHD1/PHD2, FH, and MDH2 mutations produce and secrete predomi-
nantly norepinephrine/normetanephrine, but rarely epinephrine/metanephrine 
(PPGL-associated with VHL mutations do not secrete epinephrine/metanephrine) 
(14, 17, 23, 60). However, PHEOs associated with SDHx mutations also produce 
and/or secrete dopamine/methoxytyramine, which is rarely detected in VHL 
 disease (23). On the contrary, PPGLs associated with RET or NF1 mutations 
( cluster  2) induce an increase in phenylethanolamine N-methyltransferase and 
usually produce and secrete norepinephrine/normetanephrine and epinephrine/ 
metanephrine (23, 110).The discriminatory rate between the pattern of catechol-
amine secretion between cluster 1 (VHL/SDHx-associated PPGL—normetanephrine 
but not metanephrine) and cluster 2 (NF1/RET-associated PPGL— normetanephrine 
and metanephrine) genes was found to be 99.0%. VHL and SDHx-associated 
PPGLs can be further discriminated in 78.0% of cases by the levels of 
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methoxytyramine (elevated only in SDHx-associated PPGL) (23). MAX-associated 
PPGLs secrete high levels of normetanephrine and moderate levels of metaneph-
rine (11, 18). TMEM127-associated PPGLs have a mixed pattern of catecholamine 
secretion (normetanephrine and metanephrine) (102).

IMMUNOHISTOCHEMICAL PHENOTYPE

The immunohistochemical analysis of SDHA and SDHB protein expression in 
tumor samples may be very useful to individualize the genetic screening of 
patients with PPGL (24–26). Negative staining for SDHB immunohistochemistry 
(IHC) suggests an SDHx mutation, whereas a negative staining for SDHA IHC 
implies an SDHA mutation (24, 111). False negatives (positive or weakly positive 
staining) may occur in SDHD-related tumors for SDHB staining (112), and SDHD 
IHC may aid in these cases (positive staining predicts SDHx mutations) (113). 
RET, HIF2A, MAX, TMEM127, FH, NF1 (95.0%) and VHL (84.0%) associated-
PPGLs show positive IHC for SDHA/B, and thus this is a useful tool to aid in the 
selection of genetic screening, considering the full clinical setting (24, 93, 111). 
Although the rarity of FH-associated PPGL precludes the validation of FH IHC, 
there is evidence that the pattern of FH staining may also aid with the decision to 
proceed with FH analysis, as tumor samples with known mutations in this gene 
have negative staining for FH, whereas PPGLs associated with SDHB/C/D, VHL, 
and RET retain a positive staining for this enzyme (111).

FUNCTIONAL IMAGING

Functional imaging is used in the management of PPGL to (i) localize the primary 
tumor, (ii) define the tumor burden of a metastatic PPGL that may be missed on 
CT or MRI surveys, and (iii) characterize the metabolic activity of PPGL for thera-
peutic purposes (18, 114). The 18F-FDOPA PET/CT is a highly accurate functional 
imaging tool in the investigation of PPGL (27). However, false negative results 
may infrequently occur, mainly with abdominal tumors. These missed lesions on 
18F-FDOPA PET/CT are often associated with SDHB and SDHD mutations, and it 
is worth to consider specific genetic screening for SDHx mutations in 18F-FDOPA 
PET/CT negative PPGL (27, 114).

NEXT-GENERATION SEQUENCING

Targeted NGS is a technology that processes DNA samples for simultaneous paral-
lel sequencing of multiple genes (115, 116). Considering the high number of 
PPGL-related genes, NGS is attractive in this setting. Indeed, the application of 
this tool in cohorts of patients with PPGL has proved to be faster with lower costs 
compared with the conventional Sanger sequencing technique (117, 118), and 
NGS will probably replace the sequential genetic screening based on the clinical 
phenotype in a near future. However, some limitations of NGS may need to be 



Genetics of Pheochromocytoma and Paraganglioma 15

resolved before its full implementation in the everyday practice, namely, the clini-
cal relevance of variants of uncertain significance or methodological errors induced 
by repetitive DNA sequences and pseudogenes (117–119). Additionally, in 
patients presenting with the full manifestations of a well-known syndrome, tar-
geted conventional sequencing of the gene associated with that syndrome may be 
more appropriate instead of an NGS panel of several genes that have never been 
linked to that clinical scenario, and it may save costs. Finally, NGS is not yet avail-
able in or affordable by many countries, and thus the knowledge regarding PPGL 
genotype–phenotype correlations remains very useful for a cost-effective genetic 
screening.

CONCLUSIONS

Careful genetic screening is part of the standards of care of patients with PPGL. 
First, the possibility of a genetic mutation is close to 50%, and it reaches 80% 
in some age groups (≤18yo) (2, 3, 74, 107–109). Second, finding a specific geno-
type that is associated with a predisposition to the development of multifocal/
recurrent (e.g., SDHx, HIF2A/PHD1/PHD2, and FH mutations) or metastatic 
PPGL  (e.g.,  SDHB, MAX, and FH mutations), and other non-chromaffin cell 
tumors (e.g., duodenal somatostatinomas in HIF2A mutations; renal cell cancer in 
VHL), is paramount to tailor the diagnosis, treatment, and follow-up strategies in 
patients with PPGL (14, 18, 60). With the expanding genetic landscape of PPGL, 
new genes (e.g., FH, MDH2, and HIF2A mutations) are being added, which pre-
dispose patients to the development of chromaffin and non-chromaffin cell tumors 
with characteristic biological behaviors (14, 17, 60). This evidence emphasizes 
the importance of a comprehensive sequential genetic screening and the individu-
alized strategies that may follow the discovery of a specific genotype in terms of 
diagnosis, treatment, long-term follow-up, and genetic counseling.
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